Feng Xie

300 N Pasteur Dr, S238, Stanford, CA 94305 | 510-714-7947 | fengx@stanford.edu

Summary

- 5 years of experience in medical informatics and clinical data science using large-scale electronic health records (EHR)
- Abundant collaboration experience with clinicians, engineers, and healthcare researchers in academic settings
- Extensive experience in software package development/release and large EHR data acquisition/analysis
- Strong publication track record with 6 first-author research papers in well-known medical or informatics journals

Education

Duke-National University of Singapore (NUS) Graduate Medical School,	Singapore
Joint Ph.D. by Duke and NUS, Health Service and Systems Research (Data Science)	August 2017-May 2022
Thesis: Interpretable Automated Machine Learning Scoring Systems for Emergency Care	

Tsinghua University, Bachelor of Science, School of Life Sciences GPA 91/100, Outstanding Graduate Honor (Top 3%), Outstanding Thesis Award (Top 2%) Second Degree, Bachelor of Management, School of Economics and Management

Experience

Stanford	University	School o	of Medicine
D 1	1 0 1 1		

Postdoctoral Scholar

Duke-National University of Singapore (NUS) Graduate Medical School

PhD Candidate & Fellow

• Conceptualized new research ideas and conducted original research, including AutoScore for automating clinical score generation with open-source software package, novel emergency triaging system, and readmission prediction tools

- 7 first-author publications in internationally high-impact journals, with 7 additional co-author papers
- Utilized and processed large-scale EHR database, such as Medical Information Mart for Intensive Care (MIMIC)
- Established and managed a 10-year relational database with over 200,000 patients for emergency care in Singapore
- Led a team of engineers, clinicians, and other researchers to benchmark risk models using large EHR database
- Presented original research in international conferences (e.g., American Medical Informatics Association [AMIA])
- Instructed 7 undergraduates, MD, and PhD students with co-author papers in the pipeline

Tsinghua University, Center for Applied Mathematics

Research Assistant (Undergraduate Thesis Project) • Built a mathematical model through ordinary differential equations on cell death and performed numerical simulation

University of Toronto, SickKids Hospital Research Institute

Research Assistant (Overseas Research Exchange Program)

• Used super-enhancers to identify Gli2 target genes in the 3T3-L1 cells through bioinformatical analysis

Skills

Programming: R, Python

Big Data & Machine Learning Tools: R (caret, ggplot2, glmnet, Tidyverse, survival, Knitr), Python (scikit-learn, NumPy, pandas, Matplotlib, TensorFlow, Keras), Linux environment

Data Science Projects: Pipeline for processing large-scale EHR data (cleansing, wrangling, visualization, modeling, interpretation), Statistical analysis, Software package development and release, Variable selection Research: Clinical study design, Systematic review, Cohort study (e.g., in emergency medicine and critical care), Grant writing, Research paper publication, Peer review

Beijing, China

Toronto, Canada

Beijing, China

Stanford, CA

Singapore

August 2013-July 2017

September 2022-Present

August 2017- September 2022

December 2016-July 2017

July 2016-September 2016

Selected Publications

- Xie F*, Zhou J*, Lee JW, et.al. Benchmarking Risk Triage Models for Emergency Department with Large Public Electronic Health Records. *Scientific Data*. 2022. In Press <u>https://arxiv.org/abs/2111.11017</u>
- Xie F, Liu N, Yan L, et al. Development and Validation of an Interpretable Machine Learning Scoring Tool for Estimating Time to Emergency Readmissions. *EClinicalMedicine*. 2022; 45:101315

https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(22)00045-1/fulltext#%20

- Xie F*, Yuan H*, Ning Y, et al. Deep Learning for Temporal Data Representation in Electronic Health Records: A Systematic Review of Challenges and Methodologies. *Journal of Biomedical Informatics*. 2022. https://doi.org/10.1016/j.jbi.2021.103980
- Xie F, Ning Y, Yuan H, et al. AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data. *Journal of Biomedical Informatics*. 2021. https://doi.org/10.1016/j.jbi.2021.103959
- Xie F, Ong MEH, Liew JNMH, et al. Development and Assessment of an Interpretable Machine Learning Triage Tool for Estimating Mortality After Emergency Admissions. *JAMA Network Open*. 2021. https://doi.org/10.1001/jamanetworkopen.2021.18467
- Xie F, Chakraborty B, Ong MEH, et al. AutoScore: A Machine Learning–Based Automatic Clinical Score Generator and Its Application to Mortality Prediction Using Electronic Health Records. *JMIR Med Inform.* 2020. <u>https://doi.org/10.2196/21798</u>
- Xie F, Liu N, Wu SX, et al. Novel Model for Predicting Inpatient Mortality After Emergency Admission to Hospital in Singapore: Retrospective Observational Study. *BMJ Open.* 2019. http://dx.doi.org/10.1136/bmjopen-2019-031382
- Liu N, Xie F, Siddiqui FJ, et al. Leveraging Large-scale Electronic Health Records and Interpretable Machine Learning for Clinical Decision Making at the Emergency Department: Protocol for System Development and Validation. *JMIR Research Protocols*. 2022. <u>https://doi.org/10.2196/34201</u>
- Yuan H, Xie F, Ong MEH, et al. AutoScore-Imbalance: An Automated Machine Learning Tool to Handle Data Imbalance in Interpretable Clinical Score Development. *Journal of Biomedical Informatics*. 2022. https://doi.org/10.1016/j.jbi.2022.104072
- Saffari SE, Ning Y, Xie F, et al. AutoScore-Ordinal: An Interpretable Machine Learning Framework for Generating Scoring Models for Ordinal Outcomes. *BMC Medical Research Methodology*. Under Revision. <u>https://arxiv.org/abs/2202.08407</u>

Software Packages

 AutoScore: a novel framework to automate the development of a clinical scoring model for predefined outcomes under R environment. (Xie et al. 2020 *JMIR Med Inform*, Xie et al. 2021 *Journal of Biomedical Informatics*) Accepted and published by the Comprehensive R Archive Network (CRAN): Published at: <u>https://cran.r-project.org/web/packages/AutoScore/index.html</u> and <u>https://github.com/nliulab/AutoScore</u> Software manual: <u>https://cran.r-project.org/web/packages/AutoScore/AutoScore.pdf</u>
Software guidebook: <u>https://cran.r-project.org/web/packages/AutoScore/vignettes/Guide_book.html</u>
Monthly downloads of 300+ since its publication at CRAN from June 2021

MIMIC-IV-ED Benchmark: Python suite to benchmark predictive risk models for emergency departments from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database (Xie et al., Scientific Data. 2022. In Press, <u>https://arxiv.org/abs/2111.11017</u>)
Published at: <u>https://github.com/nliulab/mimic4ed-benchmark</u>