Shicong (Mimi) Xie, PhD

Postdoctoral Fellow

Jan Skotheim lab Department of Biology Stanford University xies@stanford.edu ORCiD: 0000-0002-3283-3248

RESEARCH INTEREST

I am interested in how cell size is controlled in mammalian tissues *in vivo*: how do cells maintain size homeostasis and how is cell size information conveyed to the cell's signaling machinery? To answer these questions, I use intravital imaging, light sheet microscopy, and computational image analysis to directly observe <u>single cell dynamics in 3D tissues and in the living mouse</u>. By combining live-cell dynamics and quantitative cell size-resolved measurements of transcriptional and proteomic scaling, I seek to understand how cell size affects cell and tissue function.

EDUCATION

Ph.D. Computational & Systems Biology	
Massachusetts Institute of Technology, Cambridge, MA	2010 - 2016
B.A. Double major: Physics, Applied Mathematics (Highest honors)	
University of California, Berkeley, Berkeley, CA	2006 - 2010

RESEARCH EXPERIENCE

Postdoctoral Research

Stanford University, Stanford, CA Advisor: Jan Skotheim, Department of Biology

Cell size control in mammalian epithelial tissues

- G1/S transition controls cell size in mammalian epithelia. I discovered the G1/S cell cycle transition is cell size-dependent in skin stem cells growing *in vivo* skin and in intestinal stem cells growing in organoid culture. This cell size-dependence of G1/S transition is invariant during fate-specification in the stem cell.
- In vivo single cell imaging of mammalian skin I adapted and developed imaging methods to allow me to revisit and track single skin stem cells in an intact mouse using two photon microscopy in week-long time courses.
- Computational image analysis of 4D epithelial dynamics I developed computational analysis tools to deal with large data volumes (>100Gbs) generated by 4D imaging of tissues. I combining classical machine vision with deep learning neural network-based methods to segment cells in 3-dimensions. I also developed tools to combine

2016 - present

manually tracked cells with semi-automated cell segmentation to follow cell growth and cell cycle progression with single-cell resolution.

Evolution of Retinoblastoma Protein (Rb) C-terminal docking motif

• Metazoan Rb protein family members have unique helical docking motif. I used bioinformatics to analyze the evolutionary origin of a C-terminal helical docking motif in mammalian Rb and Rb-related proteins that confers specific binding to Cyclin D/CDK4,6 complexes.

Friedrich Miescher Institute, Basel, Switzerland	Jan - Mar, 2020	
Collaborator: Prisca Liberali	(interrupted by COVID-19)	
• Lightsheet imaging of intestinal organoids. I visited the lab of Dr.		
Liberali to use lightsheet imaging to study single cell gro	wth in	

intestinal organoids. I developed computational tools to analyze single cell growth from light sheet datasets.

Graduate Research

Massachusetts Institute of Technology, Cambridge, MA2010 - 2016Advisor: Adam C. Martin, Department of BiologyThesis committee: Doug Lauffenburger (MIT, Dept. of Biological Engineering), Hazel Sive(MIT, The Whitehead Institute)

Tissue-scale coordination of contractile forces during morphogenesis

• Investigation of intercellular coordination during collective apical constriction. I discovered how actomyosin contractions are coordinated to drive tissue folding during *Drosophila* ventral furrow invagination.

• Computational image analysis of pulsatile actomyosin contractions. Combining techniques from machine learning, image analysis, and spatial statistics, I developed a computational framework to analyze pulsatile contraction events that drive collective cell constriction.

• GPCR-signaling buffers actomyosin contractions against cell size heterogeneity. I uncovered the mechanism by which $G_{\alpha 12/13}$ -signaling coordinates apical constrictions the *Drosophila* ventral furrow by buffering actomyosin contractions against cell size-dependent defects.

Undergraduate Research	
University of California, Berkeley, Berkeley, CA	2007 - 2010
 Advisor: John Kuriyan, Departments of Molecular & Cell Biology, Chemistry Super-resolution imaging of EGFR receptor clustering 	
HHMI Janelia Research Campus, Ashburn, VA	2009
Advisor: Harald Hess	
• Automation of alignment and focus of the interferometric	

II. Janana Jaraka Daaraa I

NASA Ames Research Center, The SETI Institute, Mountain View, CA Advisor: Friedemann Freund Characterization of the electrochemistry of water-rock interfaces for

igneous rock under mechanical stress

GRANTS & FELLOWSHIPS

Active Awards

 K99/R00 Pathway to Independence Award NIH NIGMS K99GM138712 Title: Determining the molecular mechanism controlling cell size in mammalian epithelia. 	2020 - 2025 \$951,292
Past Awards	
 F32 Individual Postdoctoral Fellowship NIH NIGMS F32GM129878 Title: Determining how the G1/S cell cycle transition regulates the homeostasis of adult intestinal stem cells 	2018 - 2020 \$126,484
Company of Biologists, Journal of Cell Science Travelling Fellow	Jan - Mar, 2020 \$3,000

AWARDS

• Regents' and Chancellors' Scholarship, UC Berkeley 200	6 - 2010
• Dean's List, UC Berkeley 200	6 - 2008
• Phoebe Hearst Scholar 2000	6 - 2008
• Genzyme Science Scholarship	2006
• Robert Byrd Honors Scholarship	2006
• National Merit Scholar	2006
• Scholastic National Art & Writing Awards, Silver Medal in Creative Writing Portfol:	o 2006

MENTORING AND TEACHING

Mentor: Stanford ADVANCE Summer Institute	(1 student)	Summer 2021
---	--------------	-------------

• Mentored an incoming international graduate student via informal paper reading discussions on the topics of machine learning and computational biology. I also mentored her through formal scientific presentation for a 2007

journal club as part of a preparatory summer program designed for new graduate students from underrepresented backgrounds.

Mentor: Stanford Raising Interest in Science and Engineering (RISE) Summer Internship Program. Summer 2019 (2 students)• Co-mentored two high school interns through the Stanford RISE Summer Internship Program designed for low-income high school students. I taught them foundational concepts in computer programming in Python and introductory image analysis. Course: MIT Biological Engineering 20.430, Physical biology. (14 students) Fall 2011 • Helped develop and teach a graduate course in physical biology (20.430), covering topics like statistical mechanics, polymer models, biological motion, cell mechanics. Specifically, I helped develop using Monte Carlo simulations as the unifying computational technique covered in the course. Workshop: MIT Quantitative Biology Workshop (edX). (40 students)Winter 2012,4 • Developed and taught a minicourse on analyzing biological motion using image analysis in MATLAB and Python/NumPy, using real biological data. This was a part of an on-site workshop series designed to introduce quantitative methods in biology to undergraduates from non-research institutions. Part of this module was adapted for the edX version of this course.

Mentor: MIT Undergraduate Research Apprentice Program. (1 student) Fall 2008.

• Mentored an undergraduate mathematics student to use statistical modeling and Monte Carlo simulations to determine transition points in dynamic biological data.

INVITED TALKS

•	College de France, Center for Interdisciplinary Research in Biology Sem Paris, France. Cell size-dependent G1/S transition controls stem cell size in mamm epithelia.	
•	• 4th International Conference on Stem Cells. Kos, Greece. Cell size-dependent transition controls stem cell size in epidermal and intestinal stem cells.	nt G1/S Oct, 2021
•	• Cell Size and Growth seminar series. Online. G1 sizer coordinates cell size and cycle in mammalian stem cells.	nd cell Apr, 2020
•	Gordon Research Conference, Stochastic Physics in Biology. Ventura, CA	

Interactions Between Contractile Events During Tissue Folding. Oct, 2015
 Drosophila Research Conference. San Diego, CA. Coordinating pulsed and ratcheted contractions during Drosophila ventral furrow formation. Mar, 2014

PUBLICATIONS

- 1. Xie S and Skotheim JM (2021). Cell-size control: Chromatin-based titration primes inhibitor dilution. *Current Biology*, 31(19). 1127-1129. [link]
- 2. Xie S and Skotheim JM (2020). A G1 Sizer Coordinates Growth and Division in the Mouse Epidermis. *Current Biology*, 30(5). 916-924. [link]
- Berenson DF, Zatulovskiy E, Xie S, Skotheim JM (2019). Constitutive expression of a fluorescent protein reports the size of live human cells. *Molecular Biology of the Cell*, 30(24), 2985-2995. [link]
- Shariati SA, Dominguez A, Xie S, Wernig M, Qi SL, Skotheim JM (2019). Reversible disruption of specific transcription factor-DNA interactions using CRISPR/Cas9. *Molecular Cell*, 74(3), 622-633. [link]
- Topacio BR, Zatulovskiy E, Cristea S, Xie S, Tambo CS, Rubin SM, Sage J, Kõivomägi M, Skotheim JM (2019). Cyclin D-Cdk4, 6 Drives Cell-Cycle Progression via the Retinoblastoma Protein's C-Terminal Helix. *Molecular Cell*, 74 (4), 758-770. [link]
- 6. Xie S, Mason FM, Martin AC (2016). Loss of $G_{\alpha 12/13}$ exacerbates apical area-dependence of actomyosin contractility. *Molecular Biology of the Cell*, 27(22), 3526-3536. [link]
- Mason FM, Xie S, Vasquez CG, Tworoger M, Martin AC (2016). RhoA GTPase inhibition organizes contraction during epithelial morphogenesis. *Journal of Cell Biology*, 214(5), 603-617. [link]
- Xie S and Martin AC (2015). Intracellular signalling and intercellular coupling coordinate heterogeneous contractile events to facilitate tissue folding. *Nature Communications*, 6(1), 1-13. [link]
- 9. Tikhonova EB, Ethayathulla AS, Su Y, Hariharan P, **Xie S**, Guan L (2015). A transcription blocker isolated from a designed repeat protein combinatorial library by in vivo functional screen. *Scientific Reports*, 5(1), 1-11. [link]

POSTERS

- Xie S, de Medeiro GQG, Liberali P, Skotheim JM. Cell size-dependent G1/S transition controls stem cell size in mammalian epithelia. The Salk Institute Cell Cycle Meeting. 2021. Online.
- Xie S and Skotheim JM. G1 sizer couples cell cycle and cell growth in epidermal stem cells *in vivo*. Gordon Research Conference on Cell Growth and Proliferation. 2019. Mt. Snow, VT.
- Xie S, Mason FM, Martin AC. Loss of $G_{\alpha 12/13}$ exacerbates apical area-dependence of actomyosin contractility. American Society for Cell Biology Meeting. 2016. San Francisco, CA.

- Xie S and Martin AC.Twist signaling and intercellular coupling coordinate pulsed and ratcheted apical contractions during tissue folding. American Society for Cell Biology Meeting. 2014. Philadelphia, PA.
- Xie S and Martin AC. Coordinating the pulsed and ratcheted contractions in the *Drosophila* ventral furrow. Drosophila Research Conference. 2014 San Diego, CA.
- Xie S and Martin AC. Interactions Between Contractile Events During Tissue Folding. Gordon Research Conference on Contractile and Motile Systems. 2013. New London, NH.

MEMBERSHIPS

•	The American Society for Cell Biology	2019 - present
•	The Biophysical Society	2020 - present
•	International Society for Stem Cell Research	2020 - present

OTHER PUBLICATIONS

Poetry

- Berkeley Poetry Review, Issue No. 40: "bread also"
- Berkeley Poetry Review, Issue No. 41: "this expectant rose"
- Sinθ magazine, Issue No. 10: "Moon"