Epiphani C. Simmons, Ph.D.

Postdoctoral Fellow; Stanford University
Department of Neurology in the College of Medicine
epiphani@stanford.edu

EDUCATION

University of Arizona

Doctor of Philosophy- Neuroscience

Graduation Date: May 2021

University of Missouri- Columbia Bachelor of Science- <u>Biochemistry</u> Graduation Date: August 2017

RESEARCH EXPERIENCE

Postdoctoral Research Fellow

2021-current

Department of Neurology

Research: Determining the role of stroke-induced loss of pericytes on blood-brain barrier integrity and cognition in the post-mortem brain

Stanford University

Supervisor: Marion Buckwalter, MD, PhD

Graduate Research Assistant - PhD Candidate

2017-2021

Department of Pharmacology and Toxicology

Dissertation: Pharmacological induction of mitochondrial biogenesis through 5-HT_{1F} receptor agonism as a novel

therapeutic strategy for spinal cord injury

University of Arizona

Supervisor: Rick Schnellmann, PhD

Undergraduate Researcher

2014-2017

Department of Obstetrics and Gynecology

Research: Determining effects of an endometriosis- induced epigenetic changes in utero on embryo development using a surgical rat model

University of Missouri-Columbia Supervisor: Kathy Timms, PhD

Undergraduate Researcher-Leadership Alliance Summer Intern

2016

Department of Integrative Physiology

Research: Evaluating the development of GnRH neurons in Fgf8 hypomorphic embryos in a mouse model

University of Colorado- Boulder Supervisor: Pei-San Tsai, PhD

— MANUSCRIPTS -

<u>Simmons EC</u>, Scholpa NE, Crossman JD, Schnellmann RG. Mitochondrial biogenesis for the treatment of spinal cord injury. The Neuroscience of Spinal Cord Injury, Treatments: Experimental and Clinical. (In Press, April 2022).

<u>Simmons EC</u>, Scholpa NE, Schnellmann RG. FDA-approved 5-HT_{1F} receptor agonist lasmiditan induces mitochondrial biogenesis and enhances locomotor and blood-spinal cord barrier recovery after spinal cord injury. Experimental Neurology 2021.

<u>Simmons EC</u>, Scholpa NE, Schnellmann RG. Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases. Experimental Neurology. Experimental Neurology 2020.

E.C. Simmons

<u>Simmons EC</u>, Scholpa NE, Cleveland KC, Schnellmann RG. 5-HT_{1F} receptor agonist induces mitochondrial biogenesis and promotes recovery from spinal cord injury. JPET 2020.

Scholpa NE, Simmons EC, Crossman JD, Schnellmann RG. Time-to-treatment window and cross-sex potential of β 2-adrenergic receptor-induced mitochondrial biogenesis-mediated recovery after spinal cord injury. Toxicology and Applied Pharmacology 2020.

Scholpa NE, <u>Simmons EC</u>, Tilley DG, Schnellmann RG. B₂-adernergic receptor-mediated mitochondrial biogenesis improves skeletal muscle recovery following spinal cord injury. Experimental Neurology 2019.

GRANT SUPPORT	
Stanford College of Medicine Propel Scholar- <u>Postdoctoral Fellowship</u>	2021-current
National Institute for Neurological Diseases and Stroke (NINDS)- Individual NRSA for diverse PhD Students- <u>F31 Training Fellowship</u>	2020-2021
National Institute for Aging (NIA)- Translational Research in AD and Related Diseases - <u>T32 Training Fellowship</u>	2019-2020
HONORS AND AWARDS	
Society of Experimental Biology and Medicine (SEBM) - Young Investigator Award	2020
American Society for Pharmacology and Experimental Therapeutics (ASPET) - Travel Award	2020
National Neurotrauma Society (NNS) Diversity Travel Award	2019
NIH-Initiative for Maximizing Student Diversity- Graduate Fellowship	2017-2018
NIH- IMSD EXPRESS- Undergraduate Fellowship	2014-2017
Graduate Assistance Fellowship Award	2017-2018
The Leadership Alliance (LANS) Trainee - Undergraduate Research Intern	2016
George C. Brooks Scholar	2013-2017
University of Missouri Multi Cultural Scholar	2014- 2015

LABORATORY AND TECHNICAL SKILLS

- Human RUSH biobank project management
- Human RNA sequence preparation
- Human cell culture
- RT-PCR and qPCR
- Electron microscopy
- Confocal microscopy
- Inkscape
- Microsoft Office
- Endnote
- Graphpad Prism
- ImageJ
- Metabolomics analysis (Metabolon software)

- Survival rodent surgeries (SCI, stroke)
- In vivo drug administration via various routes
- Cre/lox breeding and colony management
- Behavioral analyses
- Mammalian cell culture
- In vitro migration/scratch assay
- Trans-endothelial electrical resistance (TEER)
- siRNA knockdown in vitro
- Immunofluorescence
- Mitochondrial isolation
- Mitochondrial respiration assay (seahorse)
- Flow cytometry

POSITIONS HELD & SERVICE	
Ad Hoc Reviewer- Vascular Pharmacology	2021-current
Bio-X Undergraduate Mentor-Stanford University	2022-current
Colors in STEM Coordinator- Graduate College- University of Arizona	2018-2021
IMSD Express Peer Mentor-Research Office- University of Missouri	2015-2017
<u>Undergraduate Research Ambassador-</u> Research Office- University of Missouri	2015-2017
PROFESSIONAL SOCIETY MEMBERSHIPS ——	
National NeuroTrauma Society (NNS)	2020-Current
American Society for Pharmacology and Experimental Therapeutics (ASPET)	2019-Current
Society of Experimental Biology and Medicine (SEBM)	2019-Current
Society of Endocrinology	2015-2017

ABSTRACTS AND PRESETNATIONS -

<u>Simmons EC, Carroll SC, Schnellmann RG.</u> Restoration of the blood-spinal cord barrier through 5-HT_{1F} receptor mediated mitochondrial biogenesis. Experimental Biology, San Diego, CA. 2020.

Simmons EC, Carroll SC, Schnellmann RG. Restoration of the blood-spinal cord barrier after spinal cord injury through 5-HT_{1F} receptor mediated mitochondrial biogenesis. NeuroTrauma International Symposium, Pittsburgh, PA. 2019.

<u>Simmons EC</u>, Scholpa NE, Cleveland NH, Schnellmann RG. 5-HT_{1F} receptor agonists induce mitochondrial biogenesis and promote recovery from spinal cord injury. NeuroTrauma International Symposium, Tortonto, Canada. 2018

<u>Simmons EC</u>, Nabli H, Timms K. Determining effects of an endometriosis- induced hostel uterus on embryos using a surgical rat model. Undergraduate Research and Achievement Forum, Columbia, MO, 2017.

<u>Simmons EC</u>, Kavanagh S, Tsai P. Evaluating the development of GnRH neurons in E13.5 and E15.5 Fgf8 hypomorphic embryos in a mouse model. Annual Biomedical Research Conference for Minority Students, Tampa, FL, 2016.

<u>Simmons EC</u>, Kavanagh S, Tsai P. Evaluating GnRH neuron distribution in E13.5 and E15.5 Fgf8 hypomorphic embryos in a mouse model. Leadership Alliance National Symposium, Stamford, CT, 2016.

<u>Simmons EC</u>, Nabli H, Timms K. Determining epigenetic hindrance on embryos using a surgical rat model for endometriosis. Undergraduate Research and Achievement Forum, Columbia, MO, 2016.

<u>Simmons EC</u>, Nabli H, Timms K. Determining epigenetic modification causing embryo demise following in utero exposure to endometriosis. Annual Biomedical Research Conference for Minority Students, Seattle, WA, 2015.

<u>Simmons EC</u>, Evans, B, Nabli, H, Timms, K. Potential epigenetic hindrance on embryos utilizing an endometriotic rat model. Undergraduate Research and Achievement Forum, Columbia, MO, 2015.