Kateryna Pistunova

Ph.D. candidate in Physics, Ph.D. minor in CS Stanford University Tony Heinz Research Group

kpistunova@gmail.com

in in/kpistunova

GS A complete list of publications, presentations, and other works is available at my Google Scholar

Programming

- Python (research data analysis)
- PyTorch, TensorFlow (coursework)
- Matlab (research data analysis)
- Lumerical, COMSOL
- LabView

Research Facts -

- 704 citations
- ▶ 5 h-index
- 5 co-authored articles, 2 preprints
- > 15 conference presentations

Technical Skills

Developing, constructing and using optical characterization setups:

- Photo-luminescence, absorption and Raman spectroscopies
- Second-harmonic generation
- Time-dependent PL spectroscopy with single photon detectors

Measurements and nano device characterization:

Optical and electrical measurements under helium and dilution

- ments under helium and dilution fridge temperature and magnetic field
- Ultra high magnetic field measurements (up to 32T)
- High vacuum systems

Cleanrooom and nano-fabrication:

- Optical and e-beam lithography
- PVD, ALD
- RIE, FIB, AFM, PFM, XPS

About Me

- Ph.D. candidate in Physics with a minor in Computer Science, with a strong background in optics, light-matter interaction, nano-device fabrication and characterization, data analysis
- Strong interest in AI, Machine Learning and their connection to Physics, with a proven track record of successful projects and completed coursework

Education

2018 – Ph.D. in Physics, Ph.D. minor in CS Stanford, CA - USA

Current Stanford University

2015 – 2018 B.A. in Physics Cambridge, MA - USA

Harvard University

Experience

7.2021 – Hardware Technology PhD Intern 9.2021 Apple

Developed and evaluated the market viability of next-generation

thin film display technologies with novel chemistry

2018 – current Manage

Ph.D. research assistant

Stanford, CA - USA

Cupertino, CA - USA

Tony Heinz group, Stanford University

 Discovered a new quasi-particle by fabricating a novel nanodevice, expanding the field of nano engineering

2015 – 100 RI 2018

Undergraduate research assistantPhilip Kim group, Harvard University

Cambridge, MA - USA

Achieved full opto-electrical control of promising novel information carriers with potential applications in quantum computing

Coursework and Projects

Deep Learning CS230 Challenges in Scalable Distributed Training of Deep Neural Networks under communication constraints link

- Developed a Subsampled Decentralized Stochastic Gradient (SDSG) algorithm to reduce communication demand in distributed training of neural networks
- In SDSG a node randomly subsamples a vector and projects it onto a lower dimensional subspace before communicating with other nodes, thereby reducing communication demands
- Selected as Outstanding Project

Computer Vision CS231A Investigating Voxel Carving for 3D Reconstruction of Occluded Objects in a Cluttered Container link

• Improved object recognition by applying voxel carving to synthetically generated 3D objects.

Other relevant courses: Machine Learning, Introduction to Robotics, Data-Driven Impact, Venture Creation for the Real Economy

Extracurricular

VP Outreach at Ukrainian Student Association at Stanford

- Coordinated humanitarian missions delivering >32 tons of medical supplies
- · Raised >\$2M for humanitarian aid
- Organized rallies, large scale (>1000 people) events, virtual presidential visit