BIOGRAPHICAL SKETCH

Provide the following information for the Senior/key personnel and other significant contributors. Follow this format for each person. **DO NOT EXCEED FIVE PAGES.**

NAME: Prakash, Manu

eRA COMMONS USER NAME (credential, e.g., agency login): PRAKASH.MANU

POSITION TITLE: Associate Professor

EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, include postdoctoral training and residency training if applicable. Add/delete rows as necessary.)

INSTITUTION AND LOCATION	DEGREE (if applicable)	Completion Date MM/YYYY	FIELD OF STUDY	
Indian Institute of Technology, Kanpur, UP India	B. Tech	06/2002	Computer Science	
Massachusetts Institute of Technology, MA	Ph. D.	09/2008	Applied Physics	
Harvard Society of Fellows, Boston MA	Junior Fellow	06/2011	Biophysics/Applied Physics	

A. Personal Statement

The focus of my lab is two-fold: to apply cellular and physical biology-based approaches to problems in organismic biophysics and develop novel tools for measurements in biological systems. We also apply ideasfrom theoretical soft-condensed matter physics to understand material properties of active living systems. Future developments in microscopy and in particular SEM are a natural extension of my work actively seeking to improve accessibility of microscopy at all levels to scientists in a multitude of settings. One of the current themes in my lab is to develop new microscopy mechanisms involving novel approaches to how such devices are constructed. Broadly, we invent new tools for studying non-model organisms with significant focus on life in the ocean - addressing fundamental questions of cell biology in context of its ecology. My lab is dedicated towards inventing, building and scaling-up "frugal science" tools to democratize access to science such as Foldscope, diagnostics of deadly diseases like malaria and convening global citizen science communities to tackle planetary scale environmental challenges such as mosquito or plankton surveillance by citizen sailors mapping the ocean in the age of Anthropocene.

B. Positions, Scientific Appointments, and Honors

Positions and Employment

2000-2002 Undergraduate Student Researcher at Center for Robotics, Indian Institute of Technology. Kanpur (India) 2002-2008 Graduate Student Researcher with Neil Gershenfeld, Massachusetts Institute of Technology Junior Fellow, Harvard Society of Fellows 2008-2011 Assistant Professor, Department of Bioengineering, Stanford University 2011-2012-Member, Biophysics Program Senior Fellow, Center for Innovation in Global Health 2015-Member, Woods Institute of the Environment Faculty Fellow, Chemistry, Engineering and Medicine (ChEM-H) 2018-Associate Professor, Department of Bioengineering, Stanford University

Other Experience and Professional Memberships

- 2004- American Physical Society
- 2011- American Society of Cell Biology
- 2013-2018 Member, Undergraduate Curriculum Committee, Department of Bioengineering, Stanford University
- 2016- Co-founder, Board Member, Foldscope Instruments
- 2017- Member, Plankton Planet

2017- Co-author,	Introductory Bio	ology textbook	"Explorers	guide	to life"
------------------	------------------	----------------	------------	-------	----------

- 2017- Board Member, PIVOT, Madagascar
- 2017- Board Member, Ciencia Puerto Rico, Puerto Rico
- 2017- Board Member, Jasper Ridge Core Leadership Team, Center for Innovation in Global Health
- 2018 Scientific Advisory Board Fédération de Recherche' (CNRS FR) TO SEE Tara Oceans System Ecology & Evolution

<u>Honors</u>

1998-1999 2006	Director's Meritorious Student Award MIT 100k Development Prize Runners
2006	Boeing Sustainability Prize, MIT Ideas Award
2008	Lemelson-MIT Student Prize Finalist
2008-2011	Harvard University William F. Milton Fund Award
2011	TED Senior Fellow
2011	Terman Fellow, Stanford
2011	mHealth Alliance Innovation Award, United Nations Foundation
2011	APS DFD Gallery of Fluids Motion Award
2011	Vodafone Wireless Innovation Award
2011	Gates Foundation Explorations Award
2011-2012	Baxter Foundation Junior Faculty Award
2013-2016	Ellison Young Faculty Award (declined)
2013 2013-2017	APS DFD Gallery of Fluids Motion Award Pew Scholar
2013-2017 2013	India Abroad Face of the Future Award
2013	Gates Foundation Explorations Award
2014	Invited Member, First White House Maker Faire
2014	Winner, Society for Science and the Public 21st Century Chemistry Set Competition
2014	Popular Science Brilliant Top 10 Award
2014	TR35 MIT Technology Review
2014	NSF Career Award
2014	NIH Directors New Innovator Award
2014	National Geographic Emerging Explorer
2016-2018	HHMI-Gates Fellow
2016	MacArthur Fellow
2016	WIRED's Next List
2017	Popular Science/NSF
2017-2022	Chan Zuckerberg BioHub Investigator
2017	Tau Beta Pi Teaching Award
2017	INDEX Design Award
2018	HHMI Investigator Competition, Semi-finalist
2018	Inaugural LINC Fellow
2018	Beazley Design of the Year Award (Paperfuge)
2019	Newsweek The Creative Class of 2019
2020	Microbiology Society's Unilever Colworth Prize
2020	Rotary International STAR Humanitarian Award for Contributions to Science, Technology,
	and Robotics

C. Contributions to Science

- My publications in physical biology bring tools from applied mathematics to novel questions in biology, at organismic and cellular scale. Physical mechanisms elucidated in these papers play afundamental role in biological processes, including several active systems. This work takes a combined experimental and analytical approach to tackle each one of the problems.
 - a. Coyle, S.M., Flaum E.M., Li, H., Krishnamurthy, D., <u>Prakash, M.</u> Coupled Active SystemsEncode an Emergent Hunting Behavior in the Unicellular Predator

Lacrymaria olor. *Current biology: CB*, 2019

- b. *Krishnamurthy, D., Katsikis, G., Bhargava, A., and Prakash, M.* Schistosoma mansoni cercariaeexploit an elastohydrodynamic coupling to swim efficiently <u>arXiv:1605.04041</u> accepted in **Nature Physics.** Sep 2016
- c. Dumont S and <u>Prakash M.</u>, Emergent Mechanics of Biological Structures *Molecular Biologyofthe Cell* Vol. 25 no. 22 3461-3465, 2014
- d. <u>Prakash M.</u>, Quere D., and Bush J., Surface tension transport of prey by feeding shorebirds: Thecapillary ratchet *Science*, Vol. 320 (5878), 931-934 (2008)
- 2. My publications in the field of frugal science:
 - a. *Bhamla, M.S., Benson, B., Chai, C., Katsikis, G., Johri, A., and Prakash* M. Paperfuge: An ultralowcost, hand-powered centrifuge inspired by the mechanics of a whirligig toy **BioRxiv** doi: http://dx.doi.org/10.1101/072207 Sep 2016
 - b. Cybulski, J., Clements, J. and Prakash, M., Foldscope: Origami based paper microscope *PLoS ONE* 9(6):e98781. doi:10.1371/journal.pone.0098781, June 2014
 - c. Ephraim, R.K.D., Duah ,E., Cybulski, J.S., Prakash, M., D'Ambrosio, M.V., Fletcher, D.A., Keiser, J., Andrews, J.R. and Bogoch, I.I., Diagnosis of Schistosoma haematobium Infection with a Mobile Phone- Mounted Foldscope and a Reversed-Lens CellScope in Ghana *American Journal of TropicalMedicine and Hygiene*, Vol. 14-0741, 2015
- 3. My publications in physics of computation:
 - a. Gilpin, W., Bull, M.S., Prakash, M. The multiscale physics of cilia and flagella *Nature Physics Review*, 2020; 2: 74-88
 - b. Mathijssen, A.J., Culver, J., Bhamla, M.S., Prakash, M. Collective intercellular communication through ultra-fast hydrodynamic trigger waves *Nature*, 2019
 - c. Katsikis, G., Cybulski, J.S. and Prakash, M., Sychronous Universal Droplet Logic and Control *NaturePhysics*, Vol. 11, 588-596, 2015
 - d. Prakash, M., Gershenfeld, N., Microfluidic Bubble Logic Science Vol. 315, 832-835, 2007
- 4. My publications in the field of active matter:
 - a. Cira, N., Benusiglio, A. and Prakash, M., Vapor mediated sensing and motility in two- component droplets *Nature* Vol. 519, 446-450, 2015

Complete List of Published Work in MyBibliography:

http://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/49563306/?reload=editSuccess