Jeff is a Ph.D. candidate at Stanford University in Electrical Engineering advised by Mark Horowitz. His research interests are in building hardware accelerators from software languages. Halide to Hardware is a project to use a data-parallel functional program formerly developed for CPU programs to produce hardware. Through the AHA hardware toolflow, these image processing and deep learning algorithms are mapped to a CGRA. Previously, Jeff received a B.S. in Electrical and Computer Engineering from Cornell University in 2015.

Publications

- **Amber: A 16-nm System-on-Chip With a Coarse-Grained Reconfigurable Array for Flexible Acceleration of Dense Linear Algebra** *IEEE Journal of Solid-State Circuits*

- **AHA: An Agile Approach to the Design of Coarse-Grained Reconfigurable Accelerators and Compilers** *ACM Transactions on Embedded Computing Systems*

 Koul, K., Melchert, J., Sreedhar, K., Truong, L., Nyengele, G., Zhang, K., Liu, Q., Setter, J., Chen, P., Mei, Y., Strange, M., Daly, R., Donovick, et al. 2023; 22 (2)

- **Unified Buffer: Compiling Image Processing and Machine Learning Applications to Push-Memory Accelerators** *ACM Transactions on Architecture and Code Optimization*

- **Interstellar: Using Halide’s Scheduling Language to Analyze DNN Accelerators**

- **Creating an Agile Hardware Design Flow**

- **Programming Heterogeneous Systems from an Image Processing DSL** *ACM Transactions on Architecture and Code Optimization*

 Pu, J., Bell, S., Yang, X., Setter, J., Richardson, S., Ragan-Kelley, J., Horowitz, M. 2017; 14 (3)