Stanford

Mohammad Zaman

Ph.D. Student in Electrical Engineering, admitted Autumn 2014

Bio

HONORS AND AWARDS

- Centennial Teaching Assistant Award Winner, Stanford University (June, 2019)
- Robert S. Hilbert Memorial Design Competition Winner, Synopsys (Aug, 2018)
- James F. Gibbons Outstanding Student Teaching Award in Electrical Engineering, Stanford University (June 18, 2017)
- Departmental Fellowship, Department of Electrical Engineering, Stanford University (Sept. 2014)

EDUCATION AND CERTIFICATIONS

- MS, Bangladesh University of Engineering and Technology, Electrical and Electronic Engineering (2011)
- BS, Bangladesh University of Engineering and Technology , Electrical and Electronic Engineering (2009)

STANFORD ADVISORS

- Lambertus Hesselink, Doctoral Dissertation Advisor (AC)
- Shanhui Fan, Doctoral Dissertation Reader (AC)
- Olav Solgaard, Doctoral Dissertation Reader (AC)
- Mark Brongersma, Doctoral Dissertation Reader (AC)

SERVICE, VOLUNTEER, AND COMMUNITY WORK

- Member, Technical Committee for evaluating radiation hazards from commercial roof-top cellphone towers in Bangladesh (2013)
- Guest Lecturer (2011 2012)
- Treasurer (January 2012 December 2012)
- Member (2012)

PERSONAL INTERESTS

Amateur Radio (License: Amateur extra, Call sign: AE6AZ)

Chess

Reading

Astronomy

LINKS

- My Website: http://web.stanford.edu/~zaman/
- Research group website: https://hesselink-lab.stanford.edu

- $\bullet \ \ Google\ scholar\ page: https://scholar.google.com/citations?user=JdGaufUAAAAJ\&hl=en\&oi=aoconfigures.google.com/citations?user=JdGaufUAAAAJ\&hl=en\&oi=aoconfigures.google.com/citations?user=JdGaufUAAAAJ\&hl=en\&oi=aoconfigures.google.com/citations?user=JdGaufUAAAAJ\&hl=en\&oi=aoconfigures.google.com/citations?user=JdGaufUAAAAJ\&hl=en\&oi=aoconfigures.google.com/citations?user=JdGaufUAAAAJ&hl=en&oi=aoconfigures.google.com/citations?user=JdGaufUAAAAJ&hl=en&oi=aoconfigures.google.com/citations?user=JdGaufUAAAAJ&hl=en&oi=aoconfigures.google.com/citations$
- Linkedin page: https://www.linkedin.com/in/zaman13/
- GitHub page: https://github.com/zaman13

Research & Scholarship

CURRENT RESEARCH AND SCHOLARLY INTERESTS

My research focuses on trapping and controlled manipulation of sub-micron sized particles. The work included modeling, fabrication and testing of chips that employ optical forces and/or dielectrophoretic forces to trap and transport nanoparticles. Our goal is to develop lab-on-a-chip systems for biomedical and chemical applications.

PROJECTS

- Plasmonic trapping and manipulation of nanoparticles Stanford University (9/1/2014 present)
- Dielectrophoretic trapping Stanford University (August 1, 2015 present)
- Adjoint optimization Stanford University (March 1, 2016 December 1, 2016)
- Microfluidic system design for droplet generation Stanford University (June 1, 2017 present)
- On chip system for small volume biochemistry Stanford University (June 1, 2017 present)

LAB AFFILIATIONS

• Lambertus Hesselink, Hesselink Lab (10/1/2014)

Teaching

COURSES

2019-20

• Modern Optics: EE 236A (Aut)

Professional

WORK EXPERIENCE

- Research Assistant Stanford University (June 22, 2015 present)
- Teaching Assistant Stanford University (January 9, 2017 March 17, 2017)

Publications

PUBLICATIONS

Solenoidal optical forces from a plasmonic Archimedean spiral PHYSICAL REVIEW A

Zaman, M., Padhy, P., Hesselink, L. 2019; 100 (1)

• Fokker-Planck analysis of optical near-field traps. Scientific reports

Zaman, M. A., Padhy, P., Hesselink, L. 2019; 9 (1): 9557

Near-field optical trapping in a non-conservative force field. Scientific reports

Zaman, M. A., Padhy, P., Hesselink, L. 2019; 9 (1): 649

 $\bullet \ \ \textbf{Extracting the potential-well of a near-field optical trap using the Helmholtz-Hodge decomposition} \ \textit{APPLIED PHYSICS LETTERS} \\$

Zaman, M., Padhy, P., Hansen, P. C., Hesselink, L.

2018; 112 (9)

• Capturing range of a near-field optical trap PHYSICAL REVIEW A

Zaman, M., Padhy, P., Hesselink, L. 2017; 96 (4)

• Dielectrophoresis-assisted plasmonic trapping of dielectric nanoparticles PHYSICAL REVIEW A

Zaman, M. A., Padhy, P., Hansen, P. C., Hesselink, L. 2017; 95 (2)

• In-plane near-field optical barrier on a chip OPTICS LETTERS

Padhy, P., Zaman, M., Hesselink, L. 2019; 44 (8): 2061–64

A semi-analytical model of a near-field optical trapping potential well JOURNAL OF APPLIED PHYSICS

Zaman, M., Padhy, P., Hesselink, L. 2017; 122 (16)

• On the substrate contribution to the back action trapping of plasmonic nanoparticles on resonant near-field traps in plasmonic films OPTICS EXPRESS

Padhy, P., Zaman, M., Hansen, P., Hesselink, L.

2017; 25 (21): 26198-214

Adjoint method for estimating Jiles-Atherton hysteresis model parameters JOURNAL OF APPLIED PHYSICS

Zaman, M. A., Hansen, P. C., Neustock, L. T., Padhy, P., Hesselink, L. 2016; 120 (9)

• Optimization of multilayer antireflection coating for photovoltaic applications OPTICS AND LASER TECHNOLOGY

Sikder, U., Zaman, M. A.

2016; 79: 88-94

• Application of Taguchi's method to optimize fiber Raman amplifier OPTICAL ENGINEERING

Zaman, M. A.

2016; 55 (4)

• Bouc-Wen hysteresis model identification using Modified Firefly Algorithm JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS

Zaman, M. A., Sikder, U.

2015; 395: 229-233