Bio

BIO

Martin E. Hellman is Professor Emeritus of Electrical Engineering at Stanford University and is affiliated with the university's Center for International Security and Cooperation (CISAC). His most recent work, "Rethinking National Security," identifies a number of questionable assumptions that are largely taken as axiomatic truths. A key part of that work brings a risk informed framework to a potential failure of nuclear deterrence and then finds surprising ways to reduce the risk. His earlier work included co-inventing public key cryptography, the technology that underlies the secure portion of the Internet. His many honors include election to the National Academy of Engineering and receiving (jointly with his colleague Whit Diffie) the million dollar ACM Turing Award, the top prize in computer science. In 2016, he and his wife of fifty years published "A New Map for Relationships: Creating True Love at Home & Peace on the Planet," providing a "unified field theory" for peace by illuminating the connections between nuclear war, conventional war, interpersonal war, and war within our own psyches.

ACADEMIC APPOINTMENTS

- Emeritus Faculty, Acad Council, Electrical Engineering
- Affiliate, Stanford Woods Institute for the Environment

HONORS AND AWARDS

- Member, National Inventor's Hall of Fame (2011)
- Member, National Academy of Engineering (2002)
- International Fellow, Marconi Society (2000)
- Pioneer Award, Electronic Frontier Foundation (1994)
- Outstanding Professor, Stanford Society of Chicano and Latino Engineers (1989)
- Outstanding Professor, Stanford Society of Black Scientists and Engineers (1989)

PROGRAM AFFILIATIONS

- Science, Technology and Society

Publications

PUBLICATIONS

- Cybersecurity, Nuclear Security, Alan Turing, and Illogical Logic COMMUNICATIONS OF THE ACM
 Hellman, M. E.
2017; 60 (12): 52–59

- Cybersecurity, Nuclear Security, Alan Turing, and Illogical Logic
 Hellman, M. E., ACM
 ASSOC COMPUTING MACHINERY 2016: 1–2

- How risky is nuclear optimism? *BULLETIN OF THE ATOMIC SCIENTISTS*
 Hellman, M. E.
 2011; 67 (2): 47-56

- RESPONSES TO NISTS PROPOSAL *COMMUNICATIONS OF THE ACM*
 1992; 35 (7): 41-54

- TIME MEMORY PROCESSOR TRADE-OFFS *IEEE TRANSACTIONS ON INFORMATION THEORY*
 AMIRAZIZI, H. R., HELLMAN, M. E.
 1988; 34 (3): 505-512

- SCIENTISTS MUST HELP STOP THE ARMS-RACE (REPRINTED FROM BREAKTHROUGH EMERGING NEW THINKING, 1988) *SCIENTIST*
 Kapitza, S. P., HELLMAN, M. E.
 1988; 2 (2): 22-22

- ON SECRET SHARING SYSTEMS *IEEE TRANSACTIONS ON INFORMATION THEORY*
 KARNIN, E. D., Greene, J. W., HELLMAN, M. E.
 1983; 29 (1): 35-41

- THE LARGEST SUPER-INCREASING SUBSET OF A RANDOM SET *IEEE TRANSACTIONS ON INFORMATION THEORY*
 KARNIN, E. D., HELLMAN, M. E.
 1983; 29 (1): 146-148

- ANOTHER CRYPTANALYTIC ATTACK ON A CRYPTOSYSTEM FOR MULTIPLE COMMUNICATION *INFORMATION PROCESSING LETTERS*
 HELLMAN, M. E.

- ON THE SECURITY OF MULTIPLE ENCRYPTION *COMMUNICATIONS OF THE ACM*
 Merkle, R. C., HELLMAN, M. E.
 1981; 24 (7): 465-467

- ON MULTIPLE ENCRYPTION SECURITY - REPLY *COMMUNICATIONS OF THE ACM*
 Merkle, R. C., HELLMAN, M. E.
 1981; 24 (11): 776-776

- REPORT OF THE PUBLIC CRYPTOGRAPHY STUDY-GROUP *ACADEME-BULLETIN OF THE AAUP*
 Baum, W. A., Heyman, I. M., BRANDIN, D. H., Buck, R. C., DAVIDA, G. I., Handelman, G., HELLMAN, M. E., Kaplan, W., Schwartz, D. C.
 1981; 67 (6): 372-379

- A CRYPTANALYTIC TIME-MEMORY TRADE-OFF *IEEE TRANSACTIONS ON INFORMATION THEORY*
 HELLMAN, M. E.
 1980; 26 (4): 401-406

- PRIVACY AND AUTHENTICATION - INTRODUCTION TO CRYPTOGRAPHY *PROCEEDINGS OF THE IEEE*
 Diffie, W., HELLMAN, M. E.
 1979; 67 (3): 397-427

- CONVOLUTIONAL ENCODING FOR WYNER WIREDAP CHANNEL *IEEE TRANSACTIONS ON INFORMATION THEORY*
 Verriest, E., HELLMAN, M. E.
 1979; 25 (2): 234-236

- FOILING COMPUTER CRIME .I. DES WILL BE TOTALLY INSECURE WITHIN 10 YEARS *IEEE SPECTRUM*
 HELLMAN, M. E.
1979; 16 (7): 32-39

- MATHEMATICS OF PUBLIC-KEY CRYPTOGRAPHY *SCIENTIFIC AMERICAN*
 HELLMAN, M. E.
 1979; 241 (2): 146-?

- HIDING INFORMATION AND SIGNATURES IN TRAPDOOR KNAPSACKS *IEEE TRANSACTIONS ON INFORMATION THEORY*
 Merkle, R. C., HELLMAN, M. E.
 1978; 24 (5): 525-530

- IMPROVED ALGORITHM FOR COMPUTING LOGARITHMS OVER GF(P) AND ITS CRYPTOGRAPHIC SIGNIFICANCE *IEEE TRANSACTIONS ON INFORMATION THEORY*
 POHLIG, S. C., HELLMAN, M. E.
 1978; 24 (1): 106-110

- GAUSSIAN WIRE-TAP CHANNEL *IEEE TRANSACTIONS ON INFORMATION THEORY*
 LEUNG YAN CHEONG, S. K., HELLMAN, M. E.
 1978; 24 (4): 451-456

- EXHAUSTIVE CRYPTO-ANALYSIS OF NBS DATA ENCRYPTION STANDARD *COMPUTER*
 Diffie, W., HELLMAN, M. E.
 1977; 10 (6): 74-84

- COMPUTER ENCRYPTION - KEY SIZE *SCIENCE*
 HELLMAN, M. E.
 1977; 198 (4312): 8-8

- NOTE ON WYNERS WIRETAP CHANNEL *IEEE TRANSACTIONS ON INFORMATION THEORY*
 CARLEIAL, A. B., HELLMAN, M. E.
 1977; 23 (3): 387-390

- EXTENSION OF SHANNON THEORY APPROACH TO CRYPTOGRAPHY *IEEE TRANSACTIONS ON INFORMATION THEORY*
 HELLMAN, M. E.
 1977; 23 (3): 289-294

- CONCERNING A BOUND ON UNDETECTED ERROR PROBABILITY *IEEE TRANSACTIONS ON INFORMATION THEORY*
 LEUNG YAN CHEONG, S. K., HELLMAN, M. E.
 1976; 22 (2): 225-237

- OPTIMAL FINITE MEMORY LEARNING ALGORITHMS FOR FINITE SAMPLE PROBLEM *INFORMATION AND CONTROL*
 COVER, T. M., Freedman, M. A., HELLMAN, M. E.
 1976; 30 (1): 49-85

- NEW DIRECTIONS IN CRYPTOGRAPHY *IEEE TRANSACTIONS ON INFORMATION THEORY*
 Diffie, W., HELLMAN, M. E.
 1976; 22 (6): 644-654

- TREE CODING WITH A FIDELITY CRITERION *IEEE TRANSACTIONS ON INFORMATION THEORY*
 DAVIS, C. R., HELLMAN, M. E.
 1975; 21 (4): 373-378

- ERROR DETECTION IN PRESENCE OF SYNCHRONIZATION LOSS *IEEE TRANSACTIONS ON COMMUNICATIONS*
 HELLMAN, M. E.
 1975; 203 (5): 538-539

- BISTABLE BEHAVIOR OF ALOHA-TYPE SYSTEMS *IEEE TRANSACTIONS ON COMMUNICATIONS*
 CARLEIAL, A. B., HELLMAN, M. E.
 1975; 203 (4): 401-410

- CONVOLUTIONAL SOURCE ENCODING *IEEE TRANSACTIONS ON INFORMATION THEORY*
 HELLMAN, M. E.
1975; 21 (6): 651-656

- **FINITE-MEMORY ALGORITHMS FOR ESTIMATING MEAN OF A GAUSSIAN DISTRIBUTION** *IEEE TRANSACTIONS ON INFORMATION THEORY*
 HELLMAN, M. E.
 1974; 20 (3): 382-384

- **USING NATURAL REDUNDANCY FOR ERROR DETECTION** *IEEE TRANSACTIONS ON COMMUNICATIONS*
 HELLMAN, M. E.
 1974; CO22 (10): 1690-1693