In some circumstances, the eukaryotic cell cycle can be best described as a succession of contingent events. For example, in most somatic cells in culture, cell growth is followed by DNA replication, then more cell growth, then mitotic entry and chromosome congression, then sister chromatid separation and mitotic exit. The transitions from one cell cycle phase to the next are generally all-or-none in character and irreversible. Our goal is to understand how these irreversible switches between phases occur.
In other contexts the cell cycle is better described as an autonomous oscillation. For example, in the early Xenopus embryo, every ~30 minutes CDK1 is activated and this reliable rhythm is maintained even if DNA replication or mitosis is blocked. Our goal is to understand how this oscillator works.

The approaches we have taken to these questions include quantitative experimental approaches, computational modeling, and the theory of nonlinear dynamics. We hope to understand the design principles of these systems, and perhaps to gain insight into other biological switches and oscillators as well.

Teaching

COURSES

2016-17

- Biological Macromolecules: BIOC 241 (Spr)
- Practical Tutorial on the Modeling of Signal Transduction Motifs: BIOS 204 (Spr)

2015-16

- Practical Tutorial on the Modeling of Signal Transduction Motifs: BIOS 204 (Spr)

2014-15

- Cell Signaling: CSB 210 (Win)
- Practical Tutorial on the Modeling of Signal Transduction Motifs: BIOS 204 (Spr)

2013-14

- Cell Signaling: CSB 210 (Win)
- Practical Tutorial on the Modeling of Signal Transduction Motifs: BIOS 204 (Spr)

STANFORD ADVISEES

Postdoctoral Faculty Sponsor

Xianrui Cheng, Julia Kamenz, Minjung Kang, Connie Phong

Doctoral Dissertation Reader (AC)

Richard She

Doctoral Dissertation Advisor (AC)

Hokyung Chung

GRADUATE AND FELLOWSHIP PROGRAM AFFILIATIONS

- Biochemistry (Phd Program)
- Biomedical Informatics (Phd Program)
- Biophysics (Phd Program)
- Cancer Biology (Phd Program)
- Chemical and Systems Biology (Phd Program)

Publications

PUBLICATIONS

- **Thresholds and ultrasensitivity from negative cooperativity** *SCIENCE*

 Ha, S. H., Ferrell, J. E.

 2016; 352 (6288): 990-993
• The Prozone Effect Accounts for the Paradoxical Function of the Cdk-Binding Protein Suc1/Cks. *CELL REPORTS*
 Ha, S. H., Kim, S. Y., Ferrell, J. E.
 2016; 14 (6): 1408-1421

• How Does the Xenopus laevis Embryonic Cell Cycle Avoid Spatial Chaos? *CELL REPORTS*
 Gelens, L., Huang, K. C., Ferrell, J. E.
 2015; 12 (5): 892-900

• Ultrasensitivity part III: cascades, bistable switches, and oscillators. *TRENDS IN BIOCHEMICAL SCIENCES*
 Ferrell, J. E., Ha, S. H.
 2014; 39 (12): 612-618

• Spatial trigger waves: positive feedback gets you a long way. *MOLECULAR BIOLOGY OF THE CELL*
 Gelens, L., Anderson, G. A., Ferrell, J. E.
 2014; 25 (22): 3486-3493

• Spatial trigger waves: positive feedback gets you a long way. *Molecular biology of the cell*
 Gelens, L., Anderson, G. A., Ferrell, J. E.
 2014; 25 (22): 3486-3493

• Ultrasensitivity part II: multisite phosphorylation, stoichiometric inhibitors, and positive feedback. *TRENDS IN BIOCHEMICAL SCIENCES*
 Ferrell, J. E., Ha, S. H.
 2014; 39 (11): 556-569

• Ultrasensitivity part II: multisite phosphorylation, stoichiometric inhibitors, and positive feedback. *Trends in biochemical sciences*
 Ferrell, J. E., Ha, S. H.
 2014; 39 (11): 556-569

• Ultrasensitivity part I: Michaelian responses and zero-order ultrasensitivity. *TRENDS IN BIOCHEMICAL SCIENCES*
 Ferrell, J. E., Ha, S. H.
 2014; 39 (10): 496-503

• Changes in oscillatory dynamics in the cell cycle of early Xenopus laevis embryos. *PLoS biology*
 Tsai, T. Y., Theriot, J. A., Ferrell, J. E.
 2014; 12 (2)

• Changes in Oscillatory Dynamics in the Cell Cycle of Early Xenopus laevis Embryos. *PLoS biology*
 Tsai, T. Y., Theriot, J. A., Ferrell, J. E.
 2014; 12 (2)

• Feedback loops and reciprocal regulation: recurring motifs in the systems biology of the cell cycle. *CURRENT OPINION IN CELL BIOLOGY*
 Ferrell, J. E.
 2013; 25 (6): 676-686

• Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle. *Nature*
 Chang, J. B., Ferrell, J. E.
 2013; 500 (7464): 603-607

• The Cdk1-APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch. *Nature cell biology*
 Yang, Q., Ferrell, J. E.
 2013; 15 (5): 519-525

• Spatial Positive Feedback at the Onset of Mitosis. *CELL*
 Santos, S. D., Wollman, R., Meyer, T., Ferrell, J. E.
 2012; 149 (7): 1500-1513

• Bistability, Bifurcations, and Waddington’s Epigenetic Landscape. *CURRENT BIOLOGY*
 Ferrell, J. E.
 2012; 22 (11): R458-R466
• Bistability in one equation or fewer. Methods in molecular biology (Clifton, N.J.)
 Anderson, G. A., Liu, X., Ferrell, J. E.
 2012; 880: 53-67

• Obituary: Dora B. Goldstein 1922-2011 ADDICTION
 Ferrell, J. E.
 2012; 107: 1013-4

• A Mechanism for the Evolution of Phosphorylation Sites CELL
 Pearlman, S. M., Serber, Z., Ferrell, J. E.
 2011; 147 (4): 934-946

• Simple Rules for Complex Processes: New Lessons from the Budding Yeast Cell Cycle MOLECULAR CELL
 Ferrell, J. E.
 2011; 43 (4): 497-500

• Modeling the Cell Cycle: Why Do Certain Circuits Oscillate? CELL
 Ferrell, J. E., Tsai, T. Y., Yang, Q.
 2011; 144 (6): 874-885

• Ultrasensitivity in the Regulation of Cdc25C by Cdk1 MOLECULAR CELL
 Trunnell, N. B., Poon, A. C., Kim, S. Y., Ferrell, J. E.
 2011; 41 (3): 263-274

• The Roles of Cyclin A2, B1, and B2 in Early and Late Mitotic Events MOLECULAR BIOLOGY OF THE CELL
 Gong, D., Ferrell, J. E.
 2010; 21 (18): 3149-3161

• Cooperative phosphorylation in the regulation of Wee1A
 Kim, S. Y., Ferrell, J. E.
 FEDERATION AMER SOC EXP BIOL. 2010

• Systems biologists seek fuller integration of systems biology approaches in new cancer research programs. Cancer research
 Wolkenhauer, O., Auffray, C., Baltrusch, S., Blüthgen, N., Byrne, H., Cascante, M., Ciliberto, A., Dale, T., Drasdo, D., Fell, D., Ferrell, J. E., Gallahan, D., Gatenby, et al
 2010; 70 (1): 12-13

• Simple, realistic models of complex biological processes: Positive feedback and bistability in a cell fate switch and a cell cycle oscillator 146th Nobel Symposium on Systems Biology
 Ferrell, J. E., Pomerening, J. R., Kim, S. Y., Trunnell, N. B., Xiong, W., Huang, C. F., Machleder, E. M.
 ELSEVIER SCIENCE BV. 2009: 3999–4005

• Signaling Motifs and Weber’s Law MOLECULAR CELL
 Ferrell, J. E.
 2009; 36 (5): 724-727

• Concordant Regulation of Translation and mRNA Abundance for Hundreds of Targets of a Human microRNA PLOS BIOLOGY
 Hendrickson, D. G., Hogan, D. J., McCullough, H. L., Myers, J. W., Herschlag, D., Ferrell, J. E., Brown, P. O.
 2009; 7 (11)

• Tuning the Activation Threshold of a Kinase Network by Nested Feedback Loops SCIENCE
 Justman, Q. A., Serber, Z., Ferrell, J. E., El-Samad, H., Shokat, K. M.
 2009; 324 (5926): 509-512

 2009; 3 (1): 9-17

• Q&A: systems biology. Journal of biology
 Ferrell, J. E.
Q&A: Cooperativity. *Journal of biology*
Ferrell, J. E.
2009; 8 (6): 53-?

Rapid cycling and precocious termination of G1 phase in cells expressing CDK1AF *MOLECULAR BIOLOGY OF THE CELL*
Pomerening, J. R., Ubersax, J. A., Ferrell, J. E.
2008; 19 (8): 3426-3441

Systems biology - On the cell cycle and its switches *NATURE*
Santos, S. D., Ferrell, J. E.
2008; 454 (7202): 288-289

Robust, tunable biological oscillations from interlinked positive and negative feedback loops *SCIENCE*
Tsai, T. Y., Choi, Y. S., Ma, W., Pomerening, J. R., Tang, C.; Ferrell, J. E.
2008; 321 (5885): 126-129

Systematic Identification of mRNAs Recruited to Argonaute 2 by Specific microRNAs and Corresponding Changes in Transcript Abundance *PLOS ONE*
Hendrickson, D. G., Hogan, D. J., Herschlag, D., Ferrell, J. E., Brown, P. O.
2008; 3 (5)

Feedback regulation of opposing enzymes generates robust, all-or-more bistable responses *CURRENT BIOLOGY*
Ferrell, J. E.
2008; 18 (6): R244-R245

A role for GPRx, a novel GPR3/6/12-related G-protein coupled receptor, in the maintenance of meiotic arrest in Xenopus laevis oocytes *Dev Biol*
2008; 317: 380-388

Systems biology. A clock with a flip switch. *Science*
Poon, A. C., Ferrell, J. E.
2007; 318 (5851): 757-758

Mechanisms of specificity in protein phosphorylation *NATURE REVIEWS MOLECULAR CELL BIOLOGY*
Ubersax, J. A., Ferrell, J. E.
2007; 8 (7): 530-541

Substrate competition as a source of ultrasensitivity in the inactivation of Wee1 *CELL*
Kim, S. Y., Ferrell, J. E.
2007; 128 (6): 1133-1145

Emi2 at the crossroads - Where CSF meets MPF *CELL CYCLE*
2007; 6 (6): 732-738

Tuning bulk electrostatics to regulate protein function *CELL*
Serber, Z., Ferrell, J. E.
2007; 128 (3): 441-444

Cyclin A2 regulates nuclear-envelope breakdown and the nuclear accumulation of cyclin B1 *CURRENT BIOLOGY*
Gong, D., Pomerening, J. R., Myers, J. W., Gustavsson, C., Jones, J. T., Hahn, A. T., Meyer, T., Ferrell, J. E.
2007; 17 (1): 85-91

A clear view of the cell cycle [book review] *Curr Biol*
Ferrell JE Jr.
2007; 17: R231-R232

Journal club: a systems biologist encourages modelling by the millions *Nature*
Ferrell, J. E.
Mechanistic studies of the mitotic activation of Mos. *Molecular and Cellular Biology*
Yue, J., Ferrell, J. E.
2006; 26 (14): 5300-5309

B-Raf and C-Raf are required for Ras-stimulated p42 MAP kinase activation in Xenopus egg extracts. *Oncogene*
Yue, J., Xiong, W., Ferrell, J. E.
2006; 25 (23): 3307-3315

A noisy 'Start' to the cell cycle. *Molecular Systems Biology*
Ubersax, J. A., Ferrell, J. E.
2006; 2

Minimizing off-target effects by using diced siRNAs for RNA interference. *Journal of RNAi and gene silencing: an international journal of RNA and gene targeting research*
Myers, J. W., Chi, J., Gong, D., Schaner, M. E., Brown, P. O., Ferrell, J. E.
2006; 2 (2): 181-194

Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy. *Nature Protocols*
2006; 1 (6): 2701-2709

Multisite M-phase phosphorylation of Xenopus Wee1A. *Molecular and Cellular Biology*
Kim, S. Y., Song, E. J., Lee, K. J., Ferrell, A. E.
2005; 25 (23): 10580-10590

Interlinked fast and slow positive feedback loops drive reliable cell decisions. *Science*
Brandman, O., Ferrett, J. E., Li, R., Meyer, T.
2005; 310 (5747): 496-498

Systems-level dissection of the cell-cycle oscillator: Bypassing positive feedback produces damped oscillations. *Cell*
Pomerening, J. R., Kim, S. Y., Ferrell, J. E.
2005; 122 (4): 565-578

STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. *Current Biology*
Liou, J., Kim, M. L., Heo, W. D., Jones, J. T., MYERS, J. W., Ferrell, J. E., Meyer, T.

Allelic variants of the canine heavy neurofilament (NFH) subunit and extensive phosphorylation in dogs with motor neuron disease. *Journal of Comparative Pathology*
2005; 132 (1): 33-50

Myers JW, Ferrell JE Jr.
2005: 29-54

Identification and comparative analysis of multiple mammalian Speedy/Ringo proteins. *Cell Cycle*
Cheng, A., Xiong, W., Ferrell, J. E., Solomon, M. J.
2005; 4 (1): 155-165

Myers, J. W., Ferrell, J. E.
2005; 309: 93-196

Mos mediates the mitotic activation of p42 MAPK in Xenopus egg extracts. *Current Biology*
Yue, J. B., Ferrell, J. E.
2004; 14 (17): 1581-1586
• Picking a winner: new mechanistic insights into the design of effective siRNAs *TRENDS IN BIOTECHNOLOGY*
 Gong, D. Q., Ferrell, J. E.
 2004; 22 (9): 451-454

• Probing the precision of the mitotic clock with a live-cell fluorescent biosensor *NATURE BIOTECHNOLOGY*
 Jones, J. T., MYERS, J. W., Ferrell, J. E., Meyer, T.
 2004; 22 (3): 306-312

• Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 Angeli, D., Ferrell, J. E., Sontag, E. D.
 2004; 101 (7): 1822-1827

• A positive-feedback-based bistable 'memory module' that governs a cell fate decision *NATURE*
 Xiong, W., Ferrell, J. E.
 2003; 426 (6965): 460-465

• Selective regulation of neurite extension and synapse formation by the beta but not the alpha isofrom of CaMKII *NEURON*
 Fink, C. C., Bayer, K. U., MYERS, J. W., Ferrell, J. E., Schulman, H., Meyer, T.
 2003; 39 (2): 283-297

• Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2 *NATURE CELL BIOLOGY*
 Pomerening, J. R., Sontag, E. D., Ferrell, J. E.
 2003; 5 (4): 346-351

• Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing *NATURE BIOTECHNOLOGY*
 MYERS, J. W., Jones, J. T., Meyer, T., Ferrell, J. E.
 2003; 21 (3): 324-328

• The JNK cascade as a biochemical switch in mammalian cells: Ultrasensitive and all-or-none responses *CURRENT BIOLOGY*
 Bagowski, C. P., Besser, J., Frey, C. R., Ferrell, J. E.
 2003; 13 (4): 315-320

• Enforced proximity in the function of a famous scaffold *MOLECULAR CELL*
 Ferrell, J. E., Cimprich, K. A.
 2003; 11 (2): 289-291

• Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability *CURRENT OPINION IN CELL BIOLOGY*
 Ferrell, J. E.
 2002; 14 (2): 140-148

• Activation of p42 mitogen-activated protein kinase (MAPK), but not c-Jun NH2-terminal kinase, induces phosphorylation and stabilization of MAPK phosphatase XCI:100 in Xenopus oocytes *MOLECULAR BIOLOGY OF THE CELL*
 Sohaskey, M. L., Ferrell, J. E.
 2002; 13 (2): 454-468

• Overview of the Alliance for Cellular Signaling *Nature*
 Gilman AG, 79 other authors including JEF
 2002; 242: 703-706

• Multisite phosphorylation and the countdown to S phase *CELL*
 Deshaies, R. J., Ferrell, J. E.
 2001; 107 (7): 819-822

• Cell cycle - Six steps to destruction *NATURE*
 Ferrell, J. E.
 2001; 414 (6863): 498-499

• The classical progesterone receptor associates with p42 MAPK and is involved in phosphatidylinositol 3-kinase signaling in Xenopus oocytes *JOURNAL OF BIOLOGICAL CHEMISTRY*
Bagowski, C. P., MYERS, J. W., Ferrell, J. E.
2001; 276 (40): 37708-37714

- **Bistability in the JNK cascade** *CURRENT BIOLOGY*
 Bagowski, C. P., Ferrell, J. E.
 2001; 11 (15): 1176-1182

- **Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible** *CHAOs*
 Ferrell, J. E., Xiong, W.
 2001; 11 (1): 227-236

- **c-jun N-terminal kinase activation in Xenopus laevis eggs and embryos - A possible non-genomic role for the JNK signaling pathway** *JOURNAL OF BIOLOGICAL CHEMISTRY*
 Bagowski, C. P., Xiong, W., Ferrell, J. E.
 2001; 276 (2): 1459-1465

- **Cell cycle** *In: McGraw-Hill Encyclopedia of Science and Technology, ninth edition*
 Ferrell JE Jr.
 2001

 Ferrell JE Jr.
 2001

- **Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible.** *Chaos (Woodbury, N.Y.)*
 Ferrell, J. E., Xiong, W.
 2001; 11 (1): 227–36

- **Disease attributed to Mycobacterium chelonae in South African clawed frogs (Xenopus laevis)** *COMPARATIVE MEDICINE*
 2000; 50 (6): 675-679

- **Cloning and characterization of Xenopus Rsk2, the predominant p90 Rsk isozyme in oocytes and eggs** *JOURNAL OF BIOLOGICAL CHEMISTRY*
 Bhatt, R. R., Ferrell, J. E.
 2000; 275 (42): 32983-32990

- **What do scaffold proteins really do?** *Science's STKE : signal transduction knowledge environment*
 Ferrell, J. E.
 2000; 2000 (52): pe1-?

- **Activation of Wee1 by p42 MAPK in vitro and in cycling Xenopus egg extracts** *MOLECULAR BIOLOGY OF THE CELL*
 Walter, S. A., Guadagno, S. N., Ferrell, J. E.
 2000; 11 (3): 887-896

- **Inhibition of progesterone-induced Xenopus oocyte maturation by Nm23** *Cell Growth Diff*
 Kim SY, Ferrell JE Jr., Chae SK, Lee KJ
 2000; 11: 485-490

- **The protein kinase p90 Rsk as an essential mediator of cytostatic factor activity** *SCIENCE*
 Bhatt, R. R., Ferrell, J. E.
 1999; 286 (5443): 1362-1365

- **Distinct, constitutively active MAPK phosphatases function in Xenopus oocytes: Implications for p42 MAPK regulation in vivo** *MOLECULAR BIOLOGY OF THE CELL*
 Sohaskey, M. L., Ferrell, J. E.
 1999; 10 (11): 3729-3743

- **Building a cellular switch: more lessons from a good egg** *BIOESSAYS*
 Ferrell, J. E.
 1999; 21 (10): 866-870
• Xenopus oocyte maturation: new lessons from a good egg BIOESSAYS
 Ferrell, J. E.
 1999; 21 (10): 833-842

• Identification and management of an outbreak of Flavobacterium meningosepticum infection in a colony of South African clawed frogs (Xenopus laevis) 1997 American-Association-of-Laboratory-Animal-Science Meeting
 AMER VETERINARY MEDICAL ASSOC.1999: 1833-?

• M phase phosphorylation of cytoplasmic dynein intermediate chain and p150(Glued) JOURNAL OF BIOLOGICAL CHEMISTRY
 Huang, C. Y., Chang, C. P., Huang, C. L., Ferrell, J. E.
 1999; 274 (20): 14262-14269

• How regulated protein translocation can produce switch-like responses TRENDS IN BIOCHEMICAL SCIENCES
 Ferrell, J. E.
 1998; 23 (12): 461-465

• Requirement for MAPK activation for normal mitotic progression in Xenopus egg extracts SCIENCE
 Guadagno, T. M., Ferrell, J. E.
 1998; 282 (5392): 1312-1315

• The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes SCIENCE
 Ferrell, J. E., Machleder, E. M.
 1998; 280 (5365): 895-898

• Assessing activities of blotted protein kinases In: Protein Phosphorylation, Ed. by Hunter T, Sefton BM, Academic Press, San Diego. [This is a re-publication of Ferrell and Martin, Methods Enzymol., 200:430-435.]
 Ferrell JE Jr, Martin GS
 1998: 177-82

• Induction of a G(2)-phase arrest in Xenopus egg extracts by activation of p42 mitogen-activated protein kinase MOLECULAR BIOLOGY OF THE CELL
 Walter, S. A., Guadagno, T. M., Ferrell, J. E.
 1997; 8 (11): 2157-2169

• Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase JOURNAL OF BIOLOGICAL CHEMISTRY
 Ferrell, J. E., Bhatt, R. R.
 1997; 272 (30): 19008-19016

• A role for mitogen-activated protein kinase in the spindle assembly checkpoint in XTC cells JOURNAL OF CELL BIOLOGY
 Wang, X. M., Zhai, Y., Ferrell, J. E.
 1997; 137 (2): 433-443

• Cell cycle McGraw-Hill Encyclopedia of Science and Technology, 8th edition
 Ferrell JE Jr.
 1997; 3: 378-380

• How responses can get more switch-like as you move down a protein kinase cascade Trends Biochem Soc
 Ferrell, J. E.
 1997; 22: 288-289

• Tripping the switch fantastic: How a protein kinase cascade can convert graded inputs into switch-like outputs TRENDS IN BIOCHEMICAL SCIENCES
 Ferrell, J. E.
 1996; 21 (12): 460-466

• Ultrasensitivity in the mitogen-activated protein kinase cascade PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
 Huang, C. Y., Ferrell, J. E.
 1996; 93 (19): 10078-10083

• Dependence of Mos-induced Cdc2 activation on MAP kinase function in a cell-free system EMBO JOURNAL
Huang, C. Y., Ferrell, J. E.
1996; 15 (9): 2169-2173

• MAP kinases in mitogenesis and development CURRENT TOPICS IN DEVELOPMENTAL BIOLOGY, VOL 33
 Ferrell, J. E.
 1996; 33: 1-60

• EVIDENCE THAT INACTIVE P42 MITOGEN-ACTIVATED PROTEIN-KINASE AND INACTIVE RSK EXIST AS A HETERODIMER IN-VIVO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
 Hsiao, K. M., Chou, S. Y., Shih, S. J., Ferrell, J. E.
 1994; 91 (12): 5480-5484

• INHIBITION OF C-JUN DNA-BINDING BY MITOGEN-ACTIVATED PROTEIN-KINASE MOLECULAR BIOLOGY OF THE CELL
 Chou, S. Y., Baichwal, V., Ferrell, J. E.
 1992; 3 (10): 1117-1130

• CELL-CYCLE TYROSINE PHOSPHORYLATION OF P34CDC2 AND A MICROTUBULE-ASSOCIATED PROTEIN-KINASE HOMOLOG IN XENOPUS OOCYTES AND EGGS MOLECULAR AND CELLULAR BIOLOGY
 Ferrell, J. E., Wu, M., Gerhart, J. C., Martin, G. S.

• ASSESSING ACTIVITIES OF BLOTTED PROTEIN-KINASES METHODS IN ENZYMOLGY
 Ferrell, J. E., Martin, G. S.
 1991; 200: 430-435

• INTRACELLULAR-LOCALIZATION OF PP60C-SRC IN HUMAN PLATELETS ONCOGENE
 Ferrell, J. E., Noble, J. A., Martin, G. S., JACQUES, Y. V., Bainton, D. F.
 1990; 5 (7): 1033-1036

• IDENTIFICATION OF A 42-KILODALTON PHOSPHOTYROSYL PROTEIN AS A SERINE(THREONINE) PROTEIN-KINASE BY RENATURATION MOLECULAR AND CELLULAR BIOLOGY
 Ferrell, J. E., Martin, G. S.
 1990; 10 (6): 3020-3026

• THROMBIN STIMULATES THE ACTIVITIES OF MULTIPLE PREVIOUSLY UNIDENTIFIED PROTEIN-KINASES IN PLATELETS JOURNAL OF BIOLOGICAL CHEMISTRY
 Ferrell, J. E., Martin, G. S.
 1989; 264 (34): 20723-20729

• TYROSINE-SPECIFIC PROTEIN-PHOSPHORYLATION IS REGULATED BY GLYCOPROTEIN-IIB-III A IN PLATELETS PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
 Ferrell, J. E., Martin, G. S.
 1989; 86 (7): 2234-2238

• PLATELET TYROSINE-SPECIFIC PROTEIN-PHOSPHORYLATION IS REGULATED BY THROMBIN MOLECULAR AND CELLULAR BIOLOGY
 Ferrell, J. E., Martin, G. S.
 1988; 8 (9): 3603-3610

• MEMBRANE BILAYER BALANCE AND PLATELET SHAPE - MORPHOLOGICAL AND BIOCHEMICAL RESPONSES TO AMPHIPATHIC COMPOUNDS BIOCHIMICA ET BIOPHYSICA ACTA
 Ferrell, J. E., Mitchell, K. T., Huestis, W. H.
 1988; 939 (2): 223-237

• SEPARATION OF PHOSPHOINOSITIDES AND OTHER PHOSPHOLIPIDS BY TWO-DIMENSIONAL THIN-LAYER CHROMATOGRAPHY ANALYTICAL BIOCHEMISTRY
 Mitchell, K. T., Ferrell, J. E., Huestis, W. H.
 1986; 158 (2): 447-453

• SULFHYDRL REDUCING AGENTS AND SHAPE REGULATION IN HUMAN-ERYTHROCYTES BLOOD
 TRUONG, H. T., Ferrell, J. E., Huestis, W. H.
 1986; 67 (1): 214-221
• MEMBRANE BILAYER BALANCE AND ERYTHROCYTE SHAPE - A QUANTITATIVE ASSESSMENT Biochemistry
Ferrell, J. E., Lee, K. J., Huestis, W. H.
1985; 24 (12): 2849-2857

• COMPUTER-ASSISTED MECHANISTIC STRUCTURE ACTIVITY STUDIES - APPLICATION TO DIVERSE CLASSES OF CHEMICAL CARCINOGENS Environmental Health Perspectives
Loew, G. H., Poulsen, M., Kirkjian, E., Ferrell, J., Sudhindra, B. S., Rebagliati, M.
1985; 61 (SEP): 69-96

• Lipid transfer between phosphatidylcholine vesicles and human erythrocytes: exponential decrease in rate with increasing acyl chain length Biochemistry
Ferrell JE Jr., Lee KJ, Huestis WH
1985; 24: 2857-2864

• PHOSPHOINOSITIDE METABOLISM AND THE MORPHOLOGY OF HUMAN-ERYTHROCYTES Journal of Cell Biology
Ferrell, J. E., Huestis, W. H.

Loew GH, Ferrell JE Jr., Poulsen M
1983: 111-138

• TRANSFER OF BAND-3, THE ERYTHROCYTE ANION TRANSPORTER, BETWEEN PHOSPHOLIPID-VESICLES AND CELLS - APPENDIX - ANALYSIS OF CHLORIDE INFLUX Biochemistry
Newton, A. C., Cook, S. L., Huestis, W. H., Ferrell, J. E.
1983; 22 (26): 6110-6117

• CALCIUM DOES NOT MEDIATE THE SHAPE CHANGE THAT FOLLOWS ATP DEPLETION IN HUMAN-ERYTHROCYTES Biochimica et Biophysics Acta
Ferrell, J. E., Huestis, W. H.
1982; 687 (2): 321-328

• Calmodulin-dependent spectrin kinase activity in human erythrocytes. Progress in clinical and biological research
Huestis, W. H., Nelson, M. J., Ferrell, J. E.
1981; 56: 137-155

• Quantum chemical studies of methylbenz[a]anthracenes: metabolism and correlations with carcinogenicity Chem-Biol Interactions
Loew GH, Poulsen M, Ferrell JE Jr., Chaet D
1980; 31: 319-340

• MECHANISTIC STUDIES OF ADDITION OF NUCLEOPHILES TO ARENE OXIDES AND DIOL EPOXIDES - CANDIDATE ULTIMATE CARCINOGENS International Journal of Quantum Chemistry
Loew, G. H., Pudzianowski, A. T., Czerwinski, A., Ferrell, J. E.
1980; 18: 223-244

• ADRENERGIC-STIMULATION OF MEMBRANE-PROTEIN PHOSPHORYLATION IN HUMAN-ERYTHROCYTES Biochimica et Biophysics Acta
Nelson, M. J., Ferrell, J. E., Huestis, W. H.
1979; 558 (1): 136-140

• Quantum chemical studies of polycyclic aromatic hydrocarbons and their metabolites: correlations to carcinogenicity Chem-Biol Interactions
Loew GH, Sudhindra BS, Ferrell JE Jr.
1979; 26: 75-89

• STRUCTURE-ACTIVITY STUDIES OF FLAVONOIDS AS INHIBITORS OF CYCLIC-AMP PHOSPHODIESTERASE AND RELATIONSHIP TO QUANTUM CHEMICAL INDEXES Molecular Pharmacology
Ferrell, J. E., Sing, P. D., Loew, G., King, R., Mansour, J. M., Mansour, T. E.
1979; 16 (2): 556-568

• MECHANISTIC STUDIES OF ARENE OXIDE AND DIOL EPOXIDE REARRANGEMENT AND HYDROLYSIS REACTIONS Journal of the American Chemical Society