Bio

BIO

Alia is a Research Development Specialist for the Stanford Research Development Office under VPDoR. She has a PhD from Stanford Engineering and a passion for interdisciplinary research. Her work experience spans academia, government, and industry, and is built around alternative energy, climate and sustainability. She has worked directly with policy makers in California in both the legislative and regulatory arenas to further the state's ambitious climate and energy goals and has prepared successful applications for funding from a variety of agencies at the state and national level. In her role at the RDO, Alia supports faculty teams from across the University, with a focus on large, collaborative research proposals in the STEM fields and a particular emphasis on climate & sustainability research.

EDUCATION AND CERTIFICATIONS

• Ph.D., Stanford University , Materials Science & Engineering (2013)
• M.S., Stanford University , Biological Sciences (2006)
• B.A., Northwestern University , Integrated Science Program (2003)

Publications

PUBLICATIONS

• Biotemplated synthesis of inorganic materials: An emerging paradigm for nanomaterial synthesis inspired by nature PROGRESS IN MATERIALS SCIENCE
 2018; 91: 1–23

• Multi-Site Functionalization of Protein Scaffolds for Bimetallic Nanoparticle Templating ADVANCED FUNCTIONAL MATERIALS
 Huggins, K. N., Schoen, A. P., Arunagirinathan, M. A., Heilshorn, S. C.
 2014; 24 (48): 7737-7744

• Rheology and simulation of 2-dimensional clathrin protein network assembly. Soft matter
 2014; 10 (33): 6219-6227

• Tuning colloidal association with specific peptide interactions SOFT MATTER
 Schoen, A. P., Hommersom, B., Heilshorn, S. C., Leunissen, M. E.
 2013; 9 (29): 6781-6785

• Engineered clathrin nanoreactors provide tunable control over gold nanoparticle synthesis and clustering JOURNAL OF MATERIALS CHEMISTRY B
 Schoen, A. P., Huggins, K. N., Heilshorn, S. C.
 2013; 1 (48): 6662-6669

• Dynamic remodelling of disordered protein aggregates is an alternative pathway to achieve robust self-assembly of nanostructures SOFT MATTER
2013; 9 (38): 9137-9145

- **Engineered Protein Templates Synthesize Inorganic Nanomaterials** *CHEMICAL ENGINEERING PROGRESS*
 2012; 108 (12): 47-50

- **Molecular recognition enables biotemplating at distinct protein sites**
 Huggins, K. N., Schoen, A. P., Arunagirinathan, M. A., Heilshorn, S. C.
 AMER CHEMICAL SOC.2012

- **Self-assembly of Clathrin protein nanostructures**
 AMER CHEMICAL SOC.2012

- **Template Engineering Through Epitope Recognition: A Modular, Biomimetic Strategy for Inorganic Nanomaterial Synthesis** *JOURNAL OF THE AMERICAN CHEMICAL SOCIETY*
 2011; 133 (45): 18202-18207

- **High Speed Water Sterilization Using One-Dimensional Nanostructures** *NANO LETTERS*
 2010; 10 (9): 3628-3632

- **Slm1 and Slm2 are novel substrates of the calcineurin phosphatase required for heat stress-induced endocytosis of the yeast uracil permease** *MOLECULAR AND CELLULAR BIOLOGY*
 Bultynck, G., Heath, V. L., Majeed, A. P., Galan, J., Hagenauer-Tsipis, R., Cyert, M. S.
 2006; 26 (12): 4729-4745