Stanford

Xiwei She

Postdoctoral Scholar, Neurology and Neurological Sciences

Bio

BIO

Dr. Xiwei She is a postdoctoral scholar in the Department of Neurology. He received his B.S. degree in Computer Science from Shanghai Jiao Tong University in 2013, and his M.S. degree in Biomedical Engineering from Zhejiang University in 2016. Worked as a research assistant at the USC Neural Modeling and Interface Laboratory, he received his Ph.D. degree in Biomedical Engineering from the University of Southern California in 2022. After graduation, he joined Stanford University as a postdoctoral scholar at the Pediatric Neurostimulation Laboratory (Baumer Lab) and Wu Tsai Neuroscience Institute.

His research interests are largely directed toward identifying the causal relationship of neurons/brain regions and understanding how information is encoded in neural signals by employing machine learning models. Specifically, his postdoc research focuses on applying machine learning modeling techniques on EEG and TMS-EEG data to better understand the impact of interictal epileptiform discharges (IEDs) on brain activity in children with childhood epilepsy with centrotemporal spikes (CECTS).

INSTITUTE AFFILIATIONS

• Member, Maternal & Child Health Research Institute (MCHRI)

STANFORD ADVISORS

• Fiona Baumer, Postdoctoral Faculty Sponsor

LINKS

• Google Scholar: https://scholar.google.com/citations?user=ZokQL7IAAAAJ&hl=en

Research & Scholarship

LAB AFFILIATIONS

• Fiona Baumer (7/1/2022)

Publications

PUBLICATIONS

 Accelerating input-output model estimation with parallel computing for testing hippocampal memory prostheses in human JOURNAL OF NEUROSCIENCE METHODS

She, X., Robinson, B., Flynn, G., Berger, T. W., Song, D.

2022; 370: 109492

 A Double-Layer Multi-Resolution Classification Model for Decoding Spatiotemporal Patterns of Spikes With Small Sample Size NEURAL COMPUTATION

She, X., Berger, T. W., Song, D.

2021; 34 (1): 219-254

• Repetitive Transcranial Magnetic Stimulation Modulates Brain Connectivity in Children with Self-Limited Epilepsy with Centrotemporal Spikes Baumer, F. M., She, X., Nix, K., Nix, K., Qi, W. WILEY.2023: S136-S137