Md Tauhidul Islam
Physical Science Research Scientist, Radiation Oncology - Radiation Physics

Publications

PUBLICATIONS

• Bladder Cancer and Artificial Intelligence: Emerging Applications. *The Urologic clinics of North America*
 2024; 51 (1): 63-75

• Revealing hidden patterns in deep neural network feature space continuum via manifold learning. *Nature communications*
 2023; 14 (1): 8506

• Biology-aware mutation-based deep learning for outcome prediction of cancer immunotherapy with immune checkpoint inhibitors. *NPJ precision oncology*
 Liu, J., Islam, M. T., Sang, S., Qiu, L., Xing, L.
 2023; 7 (1): 117

• Leveraging cell-cell similarity for high-performance spatial and temporal cellular mappings from gene expression data. *Patterns (New York, N.Y.)*
 Islam, M. T., Xing, L.
 2023; 4 (10): 100840

• Super-resolution biomedical imaging via reference-free statistical implicit neural representation. *Physics in medicine and biology*
 Ye, S., Shen, L., Islam, M. T., Xing, L.
 2023

• Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics. *Cell reports. Medicine*
 2023: 101146

• Assessment of compression-induced solid stress, fluid pressure and mechanopathological parameters in cancers in vivo using poroelastography. *Physics in medicine and biology*
 Khan, M. H., Islam, M. T., Taraballi, F., Righetti, R.
 2023

• Non-invasive imaging of interstitial fluid transport parameters in solid tumors in *vivo*. *Scientific reports*
 Majumder, S., Islam, M. T., Righetti, R.
 2023; 13 (1): 7132

• Learning image representations for content-based image retrieval of radiotherapy treatment plans. *Physics in medicine and biology*
 2023

• Multibranch CNN With MLP-Mixer-Based Feature Exploration for High-Performance Disease Diagnosis *IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS*
 Zhou, Z., Islam, M., Xing, L.
 2023

• Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data. *Nature communications*
 Islam, M. T., Xing, L.
• Image classification using graph neural network and multiscale wavelet superpixels. *Pattern Recognition Letters*
 Vasudevan, V., Bassenne, M., Islam, M., Xing, L.
 2023; 166: 89-96

• Bladder Cancer and Artificial Intelligence: Emerging Applications. *Urologic Clinics North America*
 2023

• Flat lesion detection of white light cystoscopy with deep learning
 2023

• Sequential modeling for cystoscopic image classification
 2023

• Leveraging data-driven self-consistency for high-fidelity gene expression recovery. *Nature communications*
 Islam, M. T., Wang, J., Ren, H., Li, X., Khazzani, M. B., Sang, S., Yu, L., Shen, L., Zhao, W., Xing, L.
 2022; 13 (1): 7142

• Small-Object Sensitive Segmentation Using Across Feature Map Attention. *IEEE transactions on pattern analysis and machine intelligence*
 Sang, S., Zhou, Y., Islam, M. T., Xing, L.
 2022; PP

• Utilizing differential characteristics of high dimensional data as a mechanism for dimensionality reduction. *Pattern Recognition Letters*
 Xing, S. S., Islam, M.
 2022; 157: 1-7

• Implicit neural representation for radiation therapy dose distribution. *Physics in medicine and biology*
 Vasudevan, V., Shen, L., Huang, C., Chuang, C. F., Islam, M. T., Ren, H., Yang, Y., Dong, P., Xing, L.
 2022

• Estimation of Mechanical and Transport Parameters in Cancers Using Short Time Poroelastography. *IEEE Journal of translational engineering in health and medicine*
 Majumder, S., Islam, M., Righetti, R.
 2022; 10

• Human-level comparable control volume mapping with a deep unsupervised-learning model for image-guided radiation therapy. *Computers in biology and medicine*
 Liang, X., Bassenne, M., Hristov, D. H., Islam, M. T., Zhao, W., Jia, M., Zhang, Z., Gensheimer, M., Beadle, B., Le, Q., Xing, L.
 2018; 141: 105139

• Artificial intelligence in image-guided radiotherapy: a review of treatment target localization. *Quantitative imaging in medicine and surgery*
 Zhao, W., Shen, L., Islam, M. T., Qin, W., Zhang, Z., Liang, X., Zhang, G., Xu, S., Li, X.
 2021; 11 (12): 4881-4894

• Geometry and statistics-preserving manifold embedding for nonlinear dimensionality reduction. *Pattern Recognition Letters*
 Islam, M., Xing, L.
 2021; 151: 155-162

• Artificial intelligence in image-guided radiotherapy: a review of treatment target localization. *Quantitative Imaging in Medicine and Surgery*
 Zhao, W., Shen, L., Islam, M., Qin, W., Zhang, Z., Liang, X., Zhang, G., Xu, S., Li, X.
 2021

• Non-Invasive Assessment of the Spatial and Temporal Distributions of Interstitial Fluid Pressure, Fluid Velocity and Fluid Flow in Cancers In Vivo. *IEEE ACCESS*
 Islam, M., Tang, S., Tasciotti, E., Righetti, R.
 2021; 9: 8922-89233
• Self-Supervised Feature Learning via Exploiting Multi-Modal Data for Retinal Disease Diagnosis. *IEEE TRANSACTIONS ON MEDICAL IMAGING*
 Li, X., Jia, M., Islam, M., Yu, L., Xing, L.
 2020; 39 (12): 4023–33

• A data-driven dimensionality-reduction algorithm for the exploration of patterns in biomedical data. *Nature biomedical engineering*
 Islam, M. T., Xing, L.
 2020

• Estimation of Vascular Permeability in Irregularly Shaped Cancers Using Ultrasound Poroelastography. *IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING*
 Islam, M., Tasciotti, E., Righetti, R.
 2020; 67 (4): 1083–96

• Non-invasive imaging of Young’s modulus and Poisson’s ratio in cancers in vivo. *Scientific reports*
 2020; 10 (1): 7266

• A Robust Method to Estimate the Time Constant of Elastographic Parameters. *IEEE TRANSACTIONS ON MEDICAL IMAGING*
 Islam, M., Chaudhry, A., Righetti, R.
 2019; 38 (6): 1358–70

• An analytical poroelastic model of a spherical tumor embedded in normal tissue under creep compression. *JOURNAL OF BIOMECHANICS*
 Islam, M., Righetti, R.
 2019; 89: 48–56

• Non-Invasive Imaging of Normalized Solid Stress in Cancers in Vivo. *IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM*
 Islam, M., Tasciotti, E., Righetti, R.
 2019; 7: 4300209

• A New Poroelastography Method to Assess the Solid Distribution in Cancers. *IEEE ACCESS*
 Islam, M., Righetti, R.
 2019; 7: 103404–15

• A Model-Based Approach to Investigate the Effect of a Long Bone Fracture on Ultrasound Strain Elastography. *IEEE TRANSACTIONS ON MEDICAL IMAGING*
 2018; 37 (12): 2704–17

• A New Method for Estimating the Effective Poisson’s Ratio in Ultrasound Poroelastography. *IEEE TRANSACTIONS ON MEDICAL IMAGING*
 Islam, M., Chaudhry, A., Tang, S., Tasciotti, E., Righetti, R.
 2018; 37 (5): 1178–91

• An analytical poroelastic model for ultrasound elastography imaging of tumors. *PHYSICS IN MEDICINE AND BIOLOGY*
 Islam, M., Chaudhry, A., Unnikrishnan, G., Reddy, J. N., Righetti, R.
 2018; 63 (2): 025031