Bio

Chelsea Finn is an Assistant Professor in Computer Science and Electrical Engineering at Stanford University, and the William George and Ida Mary Hoover Faculty Fellow. Professor Finn's research interests lie in the ability to enable robots and other agents to develop broadly intelligent behavior through learning and interaction. Her work lies at the intersection of machine learning and robotic control, including topics such as end-to-end learning of visual perception and robotic manipulation skills, deep reinforcement learning of general skills from autonomously collected experience, and meta-learning algorithms that can enable fast learning of new concepts and behaviors. Professor Finn received her Bachelors degree in Electrical Engineering and Computer Science at MIT and her PhD in Computer Science at UC Berkeley. Her research has been recognized through the ACM doctoral dissertation award, an NSF graduate fellowship, a Facebook fellowship, the C.V. Ramamoorthy Distinguished Research Award, and the MIT Technology Review 35 under 35 Award, and her work has been covered by various media outlets, including the New York Times, Wired, and Bloomberg. Throughout her career, she has sought to increase the representation of underrepresented minorities within CS and AI by developing an AI outreach camp at Berkeley for underprivileged high school students, a mentoring program for underrepresented undergraduates across three universities, and leading efforts within the WiML and Berkeley WiCSE communities of women researchers.

Website: https://ai.stanford.edu/~cbfinn

ACADEMIC APPOINTMENTS

• Assistant Professor, Computer Science
• Assistant Professor, Electrical Engineering
• Faculty Affiliate, Institute for Human-Centered Artificial Intelligence (HAI)
• Member, Wu Tsai Human Performance Alliance

HONORS AND AWARDS

• Research Fellowship, Alfred P. Sloan Foundation (2023)
• Early Academic Career Award in Robotics and Automation, IEEE RAS (2022)
• Young Investigator Award, Office of Naval Research (2021)
• Microsoft Faculty Fellowship, Microsoft (2020)
• ACM Doctoral Dissertation Award, ACM (2019)
• C.V. Ramamoorthy Distinguished Research Award, UC Berkeley (2017)
PROGRAM AFFILIATIONS

• Symbolic Systems Program

LINKS

• Academic website: http://ai.stanford.edu/~cbfinn/
• Google Scholar: https://scholar.google.com/citations?user=vfPE6hgAAAAJ
• CV: http://ai.stanford.edu/~cbfinn/_files/cv.pdf

Teaching

COURSES

2023-24
• Deep Multi-task and Meta Learning: CS 330 (Aut)

2022-23
• Deep Multi-task and Meta Learning: CS 330 (Aut)
• Deep Reinforcement Learning: CS 224R (Spr)

2021-22
• Deep Multi-task and Meta Learning: CS 330 (Aut)

2020-21
• Artificial Intelligence: Principles and Techniques: CS 221 (Spr)
• Deep Multi-task and Meta Learning: CS 330 (Aut)

STANFORD ADVISEES

Doctoral Dissertation Reader (AC)
Anna Goldie, Effie Li, Michael Lingelbach, Andrew Nam, Garrett Thomas

Postdoctoral Faculty Sponsor
Yuejiang Liu

Master's Program Advisor
Samir Agarwala, Lilian Chan, Ben Cheng, Vanessa Felix, Derek Hwang, Alycia Lee, Olivia Lee, Tommy Li, Chih-Ying Liu, Ian Ng, Tolu Oyeniyi, Jinang Shah, Anirudh Sriram, Regina Ta, Ekin Tiu, David Wendt, Zachary Witzel, Kerrie Wu, Sophie Wu, Zhiyu Xie, Michael Yang, suzy lou

Doctoral Dissertation Co-Advisor (AC)
Dilip Arumugam, Saurabh Kumar, Henrik Marklund, Eric Mitchell

Doctoral (Program)
Kaylee Burns, Annie Chen, Zipeng Fu, Kyle Hsu, Sasha Khazatsky, Yoonho Lee, Rafael Rafailov, Archit Sharma, Yonatan Urman, Annie Xie, Jonathan Yang, Zihao Zhao, Allan Zhou

Publications

PUBLICATIONS

• Play it by Ear: Learning Skills amidst Occlusion through Audio-Visual Imitation Learning
 Du, M., Lee, O. Y., Nair, S., Finn, C., Hauser, K., Shell, D., Huang, S.
- Memory-Based Model Editing at Scale
 JMLR-JOURNAL MACHINE LEARNING RESEARCH.2022

- A State-Distribution Matching Approach to Non-Episodic Reinforcement Learning
 Sharma, A., Ahmad, R., Finn, C., Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S.
 JMLR-JOURNAL MACHINE LEARNING RESEARCH.2022: 19645-19657

- Robust Policy Learning over Multiple Uncertainty Sets
 Xie, A., Sodhani, S., Finn, C., Pineau, J., Zhang, A., Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S.
 JMLR-JOURNAL MACHINE LEARNING RESEARCH.2022

- How to Leverage Unlabeled Data in Offline Reinforcement Learning
 Yu, T., Kumar, A., Chebotar, Y., Hausman, K., Finn, C., Levine, S., Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S.
 JMLR-JOURNAL MACHINE LEARNING RESEARCH.2022

- Improving Out-of-Distribution Robustness via Selective Augmentation
 JMLR-JOURNAL MACHINE LEARNING RESEARCH.2022

- Correct-N-Contrast: A Contrastive Approach for Improving Robustness to Spurious Correlations
 Zhang, M., Sohoni, N. S., Zhang, H. R., Finn, C., Re, C., Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S.
 JMLR-JOURNAL MACHINE LEARNING RESEARCH.2022

- Training and Evaluation of Deep Policies Using Reinforcement Learning and Generative Models
 Ghadirzadeh, A., Poklukar, P., Arndt, K., Finn, C., Kyrki, V., Kragic, D., Bjorkman, M.
 JOURNAL OF MACHINE LEARNING RESEARCH.2022

- Bridge Data: Boosting Generalization of Robotic Skills with Cross-Domain Datasets
 Ebert, F., Yang, Y., Schmeckpeper, K., Bucher, B., Georgakis, G., Daniilidis, K., Finn, C., Levine, S., Hauser, K., Shell, D., Huang, S.
 RSS FOUNDATION-ROBOTICS SCIENCE & SYSTEMS FOUNDATION.2022

- Batch Exploration With Examples for Scalable Robotic Reinforcement Learning
 Chen, A. S., Nam, H., Nair, S., Finn, C.
 IEEE ROBOTICS AND AUTOMATION LETTERS.2021; 6 (3): 4401–8

- Recovery RL: Safe Reinforcement Learning With Learned Recovery Zones
 Thananjeyan, B., Balakrishna, A., Nair, S., Luo, M., Srinivasan, K., Hwang, M., Gonzalez, J. E., Ibarz, J., Finn, C., Goldberg, K.
 IEEE ROBOTICS AND AUTOMATION LETTERS.2021; 6 (3): 4915-4922

- How to train your robot with deep reinforcement learning: lessons we have learned
 Ibarz, J., Tan, J., Finn, C., Kalakrishnan, M., Pastor, P., Levine, S.
 INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH.2021; 40 (4-5): 698-721

- WILDS: A Benchmark of in-the-Wild Distribution Shifts
 JMLR-JOURNAL MACHINE LEARNING RESEARCH.2021

- Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic Platforms
 IEEE.2021: 1274-1280

- Offline Meta-Reinforcement Learning with Advantage Weighting
 Mitchell, E., Rafailov, R., Peng, X., Levine, S., Finn, C., Meila, M., Zhang, T.
 JMLR-JOURNAL MACHINE LEARNING RESEARCH.2021

- Deep Reinforcement Learning amidst Continual Structured Non-Stationarity
 Xie, A., Harrison, J., Finn, C., Meila, M., Zhang, T.
• Learning Generalizable Robotic Reward Functions from "In-The-Wild" Human Videos
 Chen, A. S., Nair, S., Finn, C., Shell, D. A., Toussaint, M., Hsieh, M. A.
 RSS FOUNDATION-ROBOTICS SCIENCE & SYSTEMS FOUNDATION.2021

• Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices
 Liu, E., Raghunathan, A., Liang, P., Finn, C., Meila, M., Zhang, T.
 JMLR-JOURNAL MACHINE LEARNING RESEARCH.2021

• Just Train Twice: Improving Group Robustness without Training Group Information
 JMLR-JOURNAL MACHINE LEARNING RESEARCH.2021

• Catformer: Designing Stable Transformers via Sensitivity Analysis
 Davis, J., Gu, A., Choromanski, K., Dao, T., Re, C., Finn, C., Liang, P., Meila, M., Zhang, T.
 JMLR-JOURNAL MACHINE LEARNING RESEARCH.2021

• Actionable Models: Unsupervised Offline Reinforcement Learning of Robotic Skills
 JMLR-JOURNAL MACHINE LEARNING RESEARCH.2021

• Greedy Hierarchical Variational Autoencoders for Large-Scale Video Prediction
 Wu, B., Nair, S., Martin-Martin, R., Li Fei-Fei, Finn, C., IEEE COMP SOC
 IEEE COMPUTER SOC.2021: 2318-2328

• Scalable Multi-Task Imitation Learning with Autonomous Improvement
 IEEE.2020: 2167-2173

• OmniTact: A Multi-Directional High-Resolution Touch Sensor
 Padmanabha, A., Ebert, F., Tian, S., Calandra, R., Finn, C., Levine, S., IEEE
 IEEE.2020: 618-624

• Meta-Inverse Reinforcement Learning with Probabilistic Context Variables
 NEURAL INFORMATION PROCESSING SYSTEMS (NIPS).2019

• Unsupervised Curricula for Visual Meta-Reinforcement Learning
 NEURAL INFORMATION PROCESSING SYSTEMS (NIPS).2019

• Unsupervised Visuomotor Control through Distributional Planning Networks
 Yu, T., Shevchuk, G., Sadigh, D., Finn, C., Bicchi, A., KressGazit, H., Hutchinson, S.
 MIT PRESS.2019

• One-Shot Composition of Vision-Based Skills from Demonstration
 Yu, T., Abbeel, P., Levine, S., Finn, C., IEEE
 IEEE.2019: 2643–50