Linxi Shi
Sr Res Scientist-Physical, Rad/Radiological Sciences Laboratory

Bio

LINKS

- Google Scholar: https://scholar.google.com/citations?user=Yj3eIB4AAAAJ&hl=en
- Linkedin: https://www.linkedin.com/in/linxi-shi-204aa228/

Publications

PUBLICATIONS

- Single-pass metal artifact reduction using a dual-layer flat panel detector. Medical physics
  2021

- Characterization of x-ray focal spots using a rotating edge JOURNAL OF MEDICAL IMAGING
  Shi, L., Bennett, N., Wang, A. S.
  2021; 8 (2)

- Characterization of x-ray focal spots using a rotating edge Journal of medical imaging (Bellingham, Wash.)
  Shi, L., Bennett, N. R., Wang, A. S.
  2021; 8 (2): 023502

- Dual energy chest x-ray for improved COVID-19 detection using a dual-layer flat-panel detector: Simulation and phantom studies
  SPIE-INT SOC OPTICAL ENGINEERING.2021

- Characterization and Potential Applications of a Dual-Layer Flat-Panel Detector. Medical physics
  2020

  Vedantham, S., Tseng, H., Konate, S., Shi, L., Karellas, A.
  2020

- Comparative Study of Dual Energy Cone-Beam CT using a Dual-Layer Detector and kVp Switching for Material Decomposition. Proceedings of SPIE--the International Society for Optical Engineering
  2020; 11312

- Projection-domain metal artifact correction using a dual layer detector. Proceedings of SPIE--the International Society for Optical Engineering
  2020; 11312
• Dedicated cone-beam breast CT using laterally-shifted detector geometry: Quantitative analysis of feasibility for clinical translation JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY
  Vedantham, S., Tseng, H., Konate, S., Shi, L., Karellasa, A.
  2020; 28 (3): 405–26

• Reconstruction of x-ray focal spot distribution using a rotating edge. SPIE Medical Imaging 2020: Physics of Medical Imaging
  Shi, L., Bennett, N. R., Wang, A. S.
  2020

• Projection-domain metal artifact correction using a dual layer detector. SPIE Medical Imaging 2020: Physics of Medical Imaging
  2020

• Comparative study of dual energy cone-beam CT using a dual-layer detector and kVp switching for material decomposition. SPIE Medical Imaging 2020: Physics of Medical Imaging
  2020

• Toward quantitative short-scan cone beam CT using shift-invariant filtered-backprojection with equal weighting and image domain shading correction. Proceedings of SPIE—the International Society for Optical Engineering
  Shi, L., Zhu, L., Wang, A.
  2019; 11072

• Fast shading correction for cone-beam CT via partitioned tissue classification PHYSICS IN MEDICINE AND BIOLOGY
  2019; 64 (6)

• Fast shading correction for cone-beam CT via partitioned tissue classification. Physics in medicine and biology
  2019

• Breast dispersion imaging using undersampled rapid dynamic contrast-enhanced MRI
  SPIE-INT SOC OPTICAL ENGINEERING.2019

• Toward quantitative short-scan cone beam CT using shift-invariant filtered-backprojection with equal weighting and image domain shading correction
  SPIE-INT SOC OPTICAL ENGINEERING.2019

• Fast Intensity Non-Uniformity Correction for MR Images Using Sparse Samples
  Shi, L., Perkins, S., Moran, C., Hargreaves, B., Daniel, B.
  WILEY.2018: E360

• Fast Shading Correction of Cone Beam CT in Radiation Therapy Via Tissue Sparsity
  Shi, L., Zhu, L., Wei, J.
  WILEY.2018: E403–E404

• Internal Breast Tumor Heterogeneity On T2-Weighted Imaging: Double Echo Steady State(DESS) Versus 3D Fast Spin Echo (CUBE)
  Shi, L., Alley, M., Hargreaves, B., Daniel, B., Moran, C.
  WILEY.2018: E192

• The Effect of Off-Focus Radiation in Scatter Correction for Cone Beam CT
  Shi, L., Zhu, L.
  WILEY.2018: E459

• The role of off-focus radiation in scatter correction for dedicated cone beam breast CT MEDICAL PHYSICS
  Shi, L., Vedantham, S., Karellas, A., Zhu, L.
  2018; 45 (1): 191–201

• X-ray scatter correction for dedicated cone beam breast CT using a forward-projection model MEDICAL PHYSICS
Shi, L., Vedantham, S., Karellas, A., Zhu, L.
2017; 44 (6): 2312–20

• Shading Correction for Cone Beam CT in Radiation Therapy Via Sparse Sampling On Planning CT
Shi, L., Tsui, T., Wei, J., Zhu, L.
WILEY.2017: 3012

• Fast shading correction for cone beam CT in radiation therapy via sparse sampling on planning CT MEDICAL PHYSICS
Shi, L., Tsui, T., Wei, J., Zhu, L.
2017; 44 (5): 1796–1808

• Scintillator performance considerations for dedicated breast computed tomography
Vedantham, S., Shi, L., Karellas, A., Grim, G. P., Furenlid, L. R., Barber, H. B.
SPIE-INT SOC OPTICAL ENGINEERING.2017

• Effects of breast density and compression on normal breast tissue hemodynamics through breast tomosynthesis guided near-infrared spectral tomography JOURNAL OF BIOMEDICAL OPTICS
Michaelsen, K. E., Krishnaswamy, V., Shi, L., Vedantham, S., Karellas, A., Pogue, B. W., Paulsen, K. D., Poplack, S. P.
2016; 21 (9): 91316

• Library based x-ray scatter correction for dedicated cone beam breast CT MEDICAL PHYSICS
Shi, L., Vedantham, S., Karellas, A., Zhu, L.
2016; 43 (8): 4529–44

• Library-Based X-Ray Scatter Correction for Dedicated Cone-Beam Breast CT: Clinical Validation
Shi, L., Vedantham, S., Karellas, A., Zhu, L.
WILEY.2016: 3819

• Task-Specific Optimization of Scintillator Thickness for CMOS-Detector Based Cone-Beam Breast CT
Vedantham, S., Shrestha, S., Shi, L., Vijayaraghavan, G., Karellas, A.
WILEY.2016: 3346

• Scatter Correction for Dedicated Cone Beam Breast CT Based On a Forward Projection Model
Shi, L., Vedantham, S., Karellas, A., Zhu, L.
WILEY.2016: 3820

• Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications MEDICAL PHYSICS
Vedantham, S., Shrestha, S., Karellas, A., Shi, L., Gounis, M. J., Bellazzini, R., Spandre, G., Breez, A., Minuti, M.
2016; 43 (5): 2118–30

• Library-based scatter correction for dedicated cone beam breast CT: a feasibility study
SPIE-INT SOC OPTICAL ENGINEERING.2016

• Calibration and optimization of 3D digital breast tomosynthesis guided near infrared spectral tomography BIOMEDICAL OPTICS EXPRESS
Michaelsen, K. E., Krishnaswamy, V., Shi, L., Vedantham, S., Poplack, S. P., Karellas, A., Pogue, B. W., Paulsen, K. D.
2015; 6 (12): 4981–91

• Accuracy of Radiologists Interpretation of Mammographic Breast Density
Vedantham, S., Shi, L., Karellas, A., O’Connell, A.
AMER ASSOC PHYSICIANTS MEDICINE AMER INST PHYSICS.2015: 3574–75

• Dedicated Cone-Beam Breast CT: Design of a 3-D Beam-Shaping Filter
Vedantham, S., Shi, L., Karellas, A.
AMER ASSOC PHYSICIANTS MEDICINE AMER INST PHYSICS.2015: 3612

• Dedicated Cone-Beam Breast CT with Laterally-Shifted Detector: Monte Carlo Evaluation of X-Ray Scatter Distribution and Scatter-To-Primary Ratio
Shi, L., Vedantham, S., Karellas, A.
AMER ASSOC PHYSICIANTS MEDICINE AMER INST PHYSICS.2015: 3682
• Large-angle x-ray scatter in Talbot-Lau interferometry for breast imaging *Physics in Medicine and Biology*
  Vedantham, S., Shi, L., Karellas, A.
  2014; 59 (21): 6387–6400

• Dedicated Breast CT: Feasibility for Monitoring Neoadjuvant Chemotherapy Treatment *Journal of Clinical Imaging Science*
  2014; 4: 64

• Volumetric Breast Density: Comparison of Estimates From Tomosynthesis Reconstructions with Mammography
  Shi, L., Vedantham, S., Michaelsen, K., Krishnaswamy, V., Shenoy, A., Pogue, B., Karellas, A., Paulein, K.
  Wiley.2014

• Personalized estimates of radiation dose from dedicated breast CT in a diagnostic population and comparison with diagnostic mammography *Physics in Medicine and Biology*
  Vedantham, S., Shi, L., Karellas, A., O’Connell, A. M., Conover, D. L.
  2013; 58 (22): 7921–36

• X-Ray Scatter in Differential Phase-Contrast Breast Imaging Using Gratings-Based Interferometer
  Vedantham, S., Shi, L., Karellas, A.
  Amer Assoc Physicists Medicine Amer Inst Physics.2013

• Radiation Dose Reduction and Image Quality Evaluation of Coronal Truncated Projections in Cone-Beam Dedicated Breast CT
  Konate, S., Vedantham, S., Shi, L., Karellas, A.
  Amer Assoc Physicists Medicine Amer Inst Physics.2013

• Technical Note: Skin thickness measurements using high-resolution flat-panel cone-beam dedicated breast CT *Medical Physics*
  Shi, L., Vedantham, S., Karellas, A., O’Connell, A. M.
  2013; 40 (3): 031913

• Scaling-law for the energy dependence of anatomic power spectrum in dedicated breast CT *Medical Physics*
  Vedantham, S., Shi, L., Glick, S. J., Karellas, A.
  2013; 40 (1): 011901

• Dedicated breast CT: Fibroglandular volume measurements in a diagnostic population *Medical Physics*
  Vedantham, S., Shi, L., Karellas, A., O’Connell, A. M.
  2012; 39 (12): 7317–28

• Dedicated breast CT: radiation dose for circle-plus-line trajectory *Medical Physics*
  Vedantham, S., Shi, L., Karellas, A., Noo, F.
  2012; 39 (3): 1530–41

• Cone-Beam Artifacts in Dedicated Breast CT
  Vedantham, S., Shi, L., Noo, F., Glick, S., Karellas, A.
  Wiley.2011

• Semi-automated Segmentation and Classification of Digital Breast Tomosynthesis Reconstructed Images
  Vedantham, S., Shi, L., Karellas, A., Michaelsen, K. E., Krishnaswamy, V., Pogue, B. W., Paulein, K. D., IEEE
  IEEE.2011: 6188–91