Linxi Shi
Sr Res Scientist-Physical, Rad/Radiological Sciences Laboratory

Bio

LINKS

- Google Scholar: https://scholar.google.com/citations?user=Yj3eIB4AAAAJ&hl=en
- Linkedin: https://www.linkedin.com/in/linxi-shi-204aa228/

Publications

PUBLICATIONS

- Single-pass metal artifact reduction using a dual-layer flat panel detector. *Medical physics*
 2021

- Characterization of x-ray focal spots using a rotating edge *JOURNAL OF MEDICAL IMAGING*
 Shi, L., Bennett, N., Wang, A. S.
 2021; 8 (2)

- Characterization of x-ray focal spots using a rotating edge. *Journal of medical imaging (Bellingham, Wash.)*
 Shi, L., Bennett, N. R., Wang, A. S.
 2021; 8 (2): 023502

- Dual energy chest x-ray for improved COVID-19 detection using a dual-layer flat-panel detector: Simulation and phantom studies
 SPIE-INT SOC OPTICAL ENGINEERING.2021

- Characterization and Potential Applications of a Dual-Layer Flat-Panel Detector. *Medical physics*
 2020

- Dedicated cone-beam breast CT using laterally-shifted detector geometry: Quantitative analysis of feasibility for clinical translation. *Journal of X-ray science and technology*
 Vedantham, S., Tseng, H., Konate, S., Shi, L., Karellas, A.
 2020

- Comparative Study of Dual Energy Cone-Beam CT using a Dual-Layer Detector and kVp Switching for Material Decomposition. *Proceedings of SPIE--the International Society for Optical Engineering*
 2020; 11312

- Projection-domain metal artifact correction using a dual layer detector. *Proceedings of SPIE--the International Society for Optical Engineering*
 2020; 11312

- The Effect of Off-Focus Radiation in Scatter Correction for Cone Beam CT Shi, L., Zhu, L. WILEY.2018: E459

- X-ray scatter correction for dedicated cone beam breast CT using a forward-projection model. *Medical Physics*
Shi, L., Vedantham, S., Karellas, A., Zhu, L.
2017; 44 (6): 2312–20

- Shading Correction for Cone Beam CT in Radiation Therapy Via Sparse Sampling On Planning CT
Shi, L., Tsui, T., Wei, J., Zhu, L.
WILEY.2017: 3012

- Fast shading correction for cone beam CT in radiation therapy via sparse sampling on planning CT MEDICAL PHYSICS
Shi, L., Tsui, T., Wei, J., Zhu, L.
2017; 44 (5): 1796–1808

- Scintillator performance considerations for dedicated breast computed tomography
Vedantham, S., Shi, L., Karellas, A., Grim, G. P., Furenlid, L. R., Barber, H. B.
SPIE-INT SOC OPTICAL ENGINEERING.2017

- Effects of breast density and compression on normal breast tissue hemodynamics through breast tomosynthesis guided near-infrared spectral tomography JOURNAL OF BIOMEDICAL OPTICS
Michaelsen, K. E., Krishnaswamy, V., Shi, L., Vedantham, S., Karellas, A., Pogue, B. W., Paulsen, K. D., Poplack, S. P.
2016; 21 (9): 91316

- Library based x-ray scatter correction for dedicated cone beam breast CT MEDICAL PHYSICS
Shi, L., Vedantham, S., Karellas, A., Zhu, L.
2016; 43 (8): 4529–44

- Library-Based X-Ray Scatter Correction for Dedicated Cone-Beam Breast CT: Clinical Validation
Shi, L., Vedantham, S., Karellas, A., Zhu, L.
WILEY.2016: 3819

- Task-Specific Optimization of Scintillator Thickness for CMOS-Detector Based Cone-Beam Breast CT
Vedantham, S., Shrestha, S., Shi, L., Vijayaraghavan, G., Karellas, A.
WILEY.2016: 3346

- Scatter Correction for Dedicated Cone Beam Breast CT Based On a Forward Projection Model
Shi, L., Vedantham, S., Karellas, A., Zhu, L.
WILEY.2016: 3820

- Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications MEDICAL PHYSICS
Vedantham, S., Shrestha, S., Karellas, A., Shi, L., Gounis, M. J., Bellazzini, R., Spandre, G., Brez, A., Minuti, M.
2016; 43 (5): 2118–30

- Library-based scatter correction for dedicated cone beam breast CT: a feasibility study
SPIE-INT SOC OPTICAL ENGINEERING.2016

- Calibration and optimization of 3D digital breast tomosynthesis guided near infrared spectral tomography BIOMEDICAL OPTICS EXPRESS
Michaelsen, K. E., Krishnaswamy, V., Shi, L., Vedantham, S., Poplack, S. P., Karellas, A., Pogue, B. W., Paulsen, K. D.
2015; 6 (12): 4981–91

- Accuracy of Radiologists Interpretation of Mammographic Breast Density
Vedantham, S., Shi, L., Karellas, A., O’Connell, A.
AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS.2015: 3574–75

- Dedicated Cone-Beam Breast CT: Design of a 3-D Beam-Shaping Filter
Vedantham, S., Shi, L., Karellas, A.
AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS.2015: 3612

- Dedicated Cone-Beam Breast CT with Laterally-Shifted Detector: Monte Carlo Evaluation of X-Ray Scatter Distribution and Scatter-To-Primary Ratio
Shi, L., Vedantham, S., Karellas, A.
AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS.2015: 3682
- **Large-angle x-ray scatter in Talbot-Lau interferometry for breast imaging** *PHYSICS IN MEDICINE AND BIOLOGY*
 Vedantham, S., Shi, L., Karellas, A.
 2014; 59 (21): 6387–6400

- **Dedicated Breast CT: Feasibility for Monitoring Neoadjuvant Chemotherapy Treatment** *JOURNAL OF CLINICAL IMAGING SCIENCE*
 2014; 4: 64

- **Volumetric Breast Density: Comparison of Estimates From Tomosynthesis Reconstructions with Mammography**
 Shi, L., Vedantham, S., Michaelsen, K., Krishnaswamy, V., Shenoy, A., Pogue, B., Karellas, A., Paulsen, K.
 WILEY.2014

- **Personalized estimates of radiation dose from dedicated breast CT in a diagnostic population and comparison with diagnostic mammography** *PHYSICS IN MEDICINE AND BIOLOGY*
 Vedantham, S., Shi, L., Karellas, A., O'Connell, A. M., Conover, D. L.
 2013; 58 (22): 7921–36

- **X-Ray Scatter in Differential Phase-Contrast Breast Imaging Using Gratings-Based Interferometer**
 Vedantham, S., Shi, L., Karellas, A.
 AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS.2013

- **Radiation Dose Reduction and Image Quality Evaluation of Coronal Truncated Projections in Cone-Beam Dedicated Breast CT**
 Konate, S., Vedantham, S., Shi, L., Karellas, A.
 AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS.2013

- **Technical Note: Skin thickness measurements using high-resolution flat-panel cone-beam dedicated breast CT** *MEDICAL PHYSICS*
 Shi, L., Vedantham, S., Karellas, A., O'Connell, A. M.
 2013; 40 (3): 031913

- **Scaling-law for the energy dependence of anatomic power spectrum in dedicated breast CT** *MEDICAL PHYSICS*
 Vedantham, S., Shi, L., Glick, S. J., Karellas, A.
 2013; 40 (1): 011901

- **Dedicated breast CT: Fibroglandular volume measurements in a diagnostic population** *MEDICAL PHYSICS*
 Vedantham, S., Shi, L., Karellas, A., O'Connell, A. M.
 2012; 39 (12): 7317–28

- **Dedicated breast CT: radiation dose for circle-plus-line trajectory** *MEDICAL PHYSICS*
 Vedantham, S., Shi, L., Karellas, A., Noo, F.
 2012; 39 (3): 1530–41

- **Cone-Beam Artifacts in Dedicated Breast CT**
 Vedantham, S., Shi, L., Noo, F., Glick, S., Karellas, A.
 WILEY.2011

- **Semi-automated Segmentation and Classification of Digital Breast Tomosynthesis Reconstructed Images**
 Vedantham, S., Shi, L., Karellas, A., Michaelsen, K. E., Krishnaswamy, V., Pogue, B. W., Paulsen, K. D., IEEE
 IEEE.2011: 6188–91