Bio

Wu Liu is an associate professor and clinical medical physicist at Department of Radiation Oncology, Stanford University, Stanford, CA, USA. He was born in Beijing, China. He received B.S. degree in Astronomy from Nanjing University, Nanjing, China and M.S. degree in Astrophysics from Chinese Academy of Sciences, Beijing, China. He obtained his M.S. degree in Computer Science and Ph.D. degree in Medical Physics (2007) from University of Wisconsin-Madison, Madison, WI, USA. He then completed his postdoctoral training at Stanford University. Before re-joining Stanford, he was a medical physicist at Yale-New Haven hospital and an assistant professor at Yale University.

ACADEMIC APPOINTMENTS
• Clinical Associate Professor, Radiation Oncology - Radiation Physics

PROFESSIONAL EDUCATION
• PhD, University of Wisconsin-Madison, Medical Physics
• MS, University of Wisconsin-Madison, Computer Sciences
• MS, Graduate School of Chinese Academy of Science, Beijing, China, Astrophysics
• BS, Nanjing University, Nanjing, China, Astronomy

LINKS
• personal site: http://www.stanford.edu/~wuliu/

Research & Scholarship

CURRENT RESEARCH AND SCHOLARLY INTERESTS

Publications

PUBLICATIONS
• Practice Patterns for the Treatment of Uveal Melanoma with Iodine-125 Plaque Brachytherapy: Ocular Oncology Study Consortium Report 5 Ocular Oncology and Pathology
 2020; 6 (3): 210–18
• Practice Patterns for the Treatment of Uveal Melanoma with Iodine-125 Plaque Brachytherapy: Ocular Oncology Study Consortium Report 5. *Ocular oncology and pathology*
 2020; 6 (3): 210–18

• Dosimetry Modeling of Focused kV X-ray Radiotherapy for Wet Age-related Macular Degeneration. *Medical physics*
 Yan, H., Sun, W., Mruthyunjaya, P., Beadle, B., Yu, W., Kanwal, B., MacDonald, C. A., Liu, W.
 2020

• Adaptive Imaging Versus Periodic Surveillance for Intrafraction Motion Management During Prostate Cancer Radiotherapy *TECHNOLOGY IN CANCER RESEARCH & TREATMENT*
 Ma, X., Yan, H., Nath, R., Chen, Z., Li, H., Liu, W.
 2019; 18: 1533033819844489

• Novel Eye Plaque Designs for Brachytherapy of Iris and Ciliary Body Melanoma and the First Clinical Application *OCULAR ONCOLOGY AND PATHOLOGY*
 Liu, W., Kim, J., Young, B. K., Nath, R., Chen, Z., Decker, R. H., Astrahan, M. A., Pointdujour-Lim, R.
 2019; 5 (3): 220–27

• Monte Carlo dosimetry modeling of focused kV x-ray radiotherapy of eye diseases with potential nanoparticle dose enhancement *MEDICAL PHYSICS*
 2018; 45 (10): 4720–33

• On the use of bolus for pacemaker dose measurement and reduction in radiation therapy *JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS*
 2018; 19 (1): 125–31

• Incorporating patient-specific CT-based ophthalmic anatomy in modeling iodine-125 eye plaque brachytherapy dose distributions *BRACHYTHERAPY*
 2017; 16 (5): 1057–64

• Comparison of 2D and 3D modeled tumor motion estimation/prediction for dynamic tumor tracking during arc radiotherapy *PHYSICS IN MEDICINE AND BIOLOGY*
 Liu, W., Ma, X., Yan, H., Chen, Z., Nath, R., Li, H.
 2017; 62 (9): N168–N179

• Tissue feature-based intra-fractional motion tracking for stereoscopic x-ray image guided radiotherapy. *Physics in medicine and biology*
 Xie, Y., Xing, L., Gu, J., Liu, W.
 2013; 58 (11): 3615-3630

• Real-time automatic fiducial marker tracking in low contrast cine-MV images *MEDICAL PHYSICS*
 Lin, W., Lin, S., Yang, S., Liou, S., Nath, R., Liu, W.
 2013; 40 (1): 011715

• Hybrid MV-kV 3D respiratory motion tracking during radiation therapy with low imaging dose *PHYSICS IN MEDICINE AND BIOLOGY*
 Yan, H., Li, H., Liu, Z., Nath, R., Liu, W.
 2012; 57 (24): 8455–69

• Dose verification for respiratory-gated volumetric modulated arc therapy *PHYSICS IN MEDICINE AND BIOLOGY*
 Qian, J., Xing, L., Liu, W., Luxton, G.
 2011; 56 (15): 4827-4838

• Clinical development of a failure detection-based online repositioning strategy for prostate IMRT-Experiments, simulation, and dosimetry study *MEDICAL PHYSICS*
 Liu, W., Qian, J., Hancock, S. L., Xing, L., Luxton, G.
 2010; 37 (10): 5287-5297

• Dose reconstruction for volumetric modulated arc therapy (VMAT) using cone-beam CT and dynamic log files *PHYSICS IN MEDICINE AND BIOLOGY*
 Qian, J., Lee, L., Liu, W., Chu, K., Mok, E., Luxton, G., Le, Q., Xing, L.
• Trade-Offs in Data Acquisition and Processing Parameters for Backscatter and Scatterer Size Estimations. *IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL*
 Liu, W., Zagzebski, J. A.
 2010; 57 (2): 340-352

• A failure detection strategy for intrafraction prostate motion monitoring with on-board imagers for fixed-gantry IMRT. *International journal of radiation oncology, biology, physics*
 Liu, W., Luxton, G., Xing, L.
 2010; 78 (3): 904-911

• Optimized hybrid megavoltage-kilovoltage imaging protocol for volumetric prostate arc therapy. *International journal of radiation oncology, biology, physics*
 Liu, W., Wiersma, R. D., Xing, L.
 2010; 78 (2): 595-604

• Real-time 3D internal marker tracking during arc radiotherapy by the use of combined MV-kV imaging. *PHYSICS IN MEDICINE AND BIOLOGY*
 Liu, W., Wiersma, R. D., Mao, W., Luxton, G., Xing, L.
 2008; 53 (24): 7197-7213

• Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer. *PHYSICS IN MEDICINE AND BIOLOGY*
 2008; 53 (15): 4169-4183

• Spectral and scatterer-size correlation during angular compounding: simulations and experimental studies. *Ultrasonic imaging*
 Liu, W., Zagzebski, J. A., Varghese, T., Gerig, A. L., Hall, T. J.
 2006; 28 (4): 230–44

• Segmentation of elastographic images using a coarse-to-fine active contour model. *Ultrasound in medicine & biology*
 2006; 32 (3): 397–408

• Monitoring stiffness changes in lesions after radiofrequency ablation at different temperatures and durations of ablation. *Ultrasound in medicine & biology*
 Bharat, S., Techavipoo, U., Kiss, M. Z., Liu, W., Varghese, T.
 2005; 31 (3): 415–22

• Semiautomated thermal lesion segmentation for three-dimensional elastographic imaging. *Ultrasound in medicine & biology*
 2004; 30 (5): 655–64

• Elastographic versus x-ray CT imaging of radio frequency ablation coagulations: an in vitro study. *Medical physics*
 2004; 31 (6): 1322–32

• Elastographic measurement of the area and volume of thermal lesions resulting from radiofrequency ablation: pathologic correlation. *AJR. American journal of roentgenology*
 2003; 181 (3): 701–7