The Bejerano Lab studies genome function in human and related species. We are deeply interested in the following broad questions: Mapping genome sequence (variation) to phenotype (differences) and extracting specific genetic insights from deep sequencing measurements. We take a particular interest in gene cis regulation. We use our joint affiliation to apply a combination of computational and experimental approaches. We collect large scale experimental data; write computational analysis tools; run them massively to discover the most exciting testable hypotheses; which we proceed to experimentally validate. We work in small teams, in house or with close collaborators of experimentalists and computational tool users who interact directly with our computational tool builders. Please see our research tab for more.
CURRENT RESEARCH AND SCHOLARLY INTERESTS

The Bejerano Lab is currently focused on the following topics:

1. Genotype - Phenotype relationships in humans.
 We are developing novel methods for linking human whole genome variation with human disease and trait variation. We apply these methods to multiple datasets in the contexts of prematurity, autism, heart disease and more [20, 29, 32, 34, 36, 38, 39, 43].

2. Genotype - Phenotype relationships between mammals.
 We develop novel methods to link trait evolution in the mammalian tree to whole genome evolution in over a hundred species. Application of these methods allow us to shed new light on human genome function, on human disease and on human evolution [29, 34, 35]. See our “Forward Genomics” web server.

3. Extracting genetic knowledge from high throughput genomic assays.
 High throughput genomic assays are most often used to make biochemical discoveries. We develop methods to extract genetic and developmental knowledge from these assays [27, 28, 31]. Through joint work with Sue McConnell we take special interest in the developing neocortex [29, 41]. Also see our popular GREAT web server for the cis-regulatory interpretation of high throughput genomic datasets.

4. Vertebrate transcription regulation.
Much of our work relies on our strong foundations in the study of vertebrate gene regulation [9-11, 14, 15, 18, 22, 25, 27, 29-33, 35, 38-42]. See our PRISM resource of predicted transcription factor functions and COMPLEX resource for predicted transcription factor dimers and complexes. Also see our zCNE resource of conserved non-coding (likely gene regulatory) sequences in the zebrafish genome.

5. Vertebrate genome evolution.

We are extremely well versed in human and vertebrate genome evolution [9-11, 14, 17, 18, 22, 23, 25, 26, 29, 33-35, 37, 39, 40]. Notably, we discovered ultraconservation and correctly postulated that many of these elements are developmental enhancers. We also showed that mammalian ultraconserved elements evolve under extreme purifying selection, and that they are almost never lost during mammalian evolution [9, 23, 25]. We also discovered the first developmental enhancers conserved between human and protostomes [33], attempted to group human conserved non-coding DNA into paralog families [10], and studied the co-option of mobile elements into cis-regulatory roles [18, 22, 26, 41].

We have done work in the field of evolutionary developmental biology [29, 33-35, 43], including a first survey of developmental enhancers (including a penile spine/vibrissae enhancer) uniquely lost in humans [29], fueled by our deep interest in phenotype - genotype relationships.

[For links to the references and more, please see our lab's website]

Teaching

COURSES

2017-18

• The Human Genome Source Code: BIOMEDIN 273A, CS 273A, DBIO 273A (Win)

2016-17

• A Computational Tour of the Human Genome: CS 273A (Aut)

2015-16

• A Computational Tour of the Human Genome: CS 273A (Aut)

2014-15

• A Computational Tour of the Human Genome: CS 273A (Aut)

STANFORD ADVISEES

Postdoctoral Faculty Sponsor

Solomon Endlich, Amir Marcovitz

Master's Program Advisor

Julia Daniel, Jonathan Deaton, Taide Ding, Samuel Premutico

Doctoral Dissertation Co-Advisor (AC)

Yosuke Tanigawa

Undergraduate Major Advisor

Sebastian Le Bras

Postdoctoral Research Mentor

Whitney Heavner
GRADUATE AND FELLOWSHIP PROGRAM AFFILIATIONS

- Biomedical Informatics (Phd Program)
- Biomedical Informatics (Masters Program)
- Cardiovascular Medicine (Fellowship Program)
- Clinical Informatics (Fellowship Program)
- Developmental Biology (Phd Program)
- Developmental-Behavioral Pediatrics (Fellowship Program)
- Genetics (Phd Program)
- Human Genetics and Genetic Counseling (Masters Program)
- Medical Genetics (Fellowship Program)
- Molecular and Genetic Medicine (Fellowship Program)
- Neonatal-Perinatal Medicine (Fellowship Program)
- Neurosciences (Phd Program)

Publications

PUBLICATIONS

- Chitayat syndrome: hyperphalangism, characteristic facies, hallux valgus and bronchomalacia results from a recurrent c.266A > G p.(Tyr89Cys) variant in the ERF gene. *Journal of Medical Genetics*
 2017; 54 (3): 157-165

- Systematic reanalysis of clinical exome data yields additional diagnoses: implications for providers. *Genetics in Medicine*
 Wenger, A. M., Guturu, H., Bernstein, J. A., Bejerano, G.
 2017; 19 (2): 209-214

- M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. *Nature genetics*
 2016

- TBR1 regulates autism risk genes in the developing neocortex. *Genome research*
 2016; 26 (8): 1013-1022

- Systematic reanalysis of clinical exome data yields additional diagnoses: implications for providers. *Genetics in medicine*
 Wenger, A. M., Guturu, H., Bernstein, J. A., Bejerano, G.
 2016

- "Reverse Genomics" Predicts Function of Human Conserved Noncoding Elements. *Molecular Biology and Evolution*
 Marcovitz, A., Jia, R., Bejerano, G.
 2016; 33 (5): 1358-1369

- Erosion of Conserved Binding Sites in Personal Genomes Points to Medical Histories. *PLoS computational biology*
 Guturu, H., Chinchali, S., Clarke, S. L., Bejerano, G.
 2016; 12 (2)

- Changes in the enhancer landscape during early placental development uncover a trophoblast invasion gene-enhancer network. *Placenta*
 Tuteja, G., Chung, T., Bejerano, G.
 2016; 37: 45-55
• Mx1 and Mx2 key antiviral proteins are surprisingly lost in toothed whales. *Proceedings of the National Academy of Sciences of the United States of America*
 Braun, B. A., Marcovitz, A., Camp, J. G., Jia, R., Bejerano, G.
 2015; 112 (26): 8036-8040

• Characterization of TCF21 Downstream Target Regions Identifies a Transcriptional Network Linking Multiple Independent Coronary Artery Disease Loci. *PLOS Genetics*
 2015; 11 (5)

• A family of transposable elements co-opted into developmental enhancers in the mouse neocortex. *Nature Communications*
 Notwell, J. H., Chung, T., Heavner, W., Bejerano, G.
 2015; 6

• Microbiota modulate transcription in the intestinal epithelium without remodeling the accessible chromatin landscape. *Genome research*
 2014; 24 (9): 1504-1516

• Automated discovery of tissue-targeting enhancers and transcription factors from binding motif and gene function data. *PLoS computational biology*
 Tuteja, G., Moreira, K. B., Chung, T., Chen, J., Wenger, A. M., Bejerano, G.
 2014; 10 (1)

• Structural-aided prediction of mammalian transcription factor complexes in conserved non-coding elements. *Philosophical transactions of the Royal Society of London. Series B, Biological sciences*
 Guturu, H., Doxey, A. C., Wenger, A. M., Bejerano, G.
 2013; 368 (1632): 20130029-?

• A Penile Spine/Vibrissa Enhancer Sequence Is Missing in Modern and Extinct Humans but Is Retained in Multiple Primates with Penile Spines and Sensory Vibrissae. *PLOS ONE*
 2013; 8 (12)

• Computational methods to detect conserved non-genic elements in phylogenetically isolated genomes: application to zebrafish. *Nucleic acids research*
 Hiller, M., Agarwal, S., Notwell, J. H., Parikh, R., Guturu, H., Wenger, A. M., Bejerano, G.
 2013; 41 (15)

• The Enhancer Landscape during Early Neocortical Development Reveals Patterns of Dense Regulation and Co-option. *PLoS genetics*
 Wenger, A. M., Clarke, S. L., Notwell, J. H., Chung, T., Tuteja, G., Guturu, H., Schaar, B. T., Bejerano, G.
 2013; 9 (8)

• PRISM offers a comprehensive genomic approach to transcription factor function prediction. *Genome research*
 2013; 23 (5): 889-904
• Enhancers: five essential questions *Nature Reviews Genetics*
 Pennacchio, L. A., Bickmore, W., Dean, A., Nobrega, M. A., Bejerano, G.

• Evolutionary biology for the 21st century. *PLoS biology*
 2013; 11 (1)

• Evolutionary Biology for the 21st Century *PLOS Biology*
 2013; 11 (1)

• A penile spine/vibrissa enhancer sequence is missing in modern and extinct humans but is retained in multiple primates with penile spines and sensory vibrissae. *PLoS one*
 2013; 8 (12)

• Structure-aided prediction of mammalian transcription factor complexes in conserved non-coding elements. *Philosophical transactions of the Royal Society of London. Series B, Biological sciences*
 Guturu, H., Doxey, A. C., Wenger, A. M., Bejerano, G.
 2013; 368 (1632): 20130029-

• PESNPdb: A comprehensive database of SNPs studied in association with pre-eclampsia *Placenta*
 Tuteja, G., Cheng, E., Papadakis, H., Bejerano, G.
 2012; 33 (12): 1055-1057

• Hundreds of conserved non-coding genomic regions are independently lost in mammals *Nucleic Acids Research*
 Hiller, M., Schaar, B. T., Bejerano, G.
 2012; 40 (22): 11463-11476

• A "Forward Genomics" Approach Links Genotype to Phenotype using Independent Phenotypic Losses among Related Species *Cell Reports*
 Hiller, M., Schaar, B. T., Indjeian, V. B., Kingsley, D. M., Hagey, L. R., Bejerano, G.
 2012; 2 (4): 817-823

• Human Developmental Enhancers Conserved between Deuterostomes and Protostomes *Plos Genetics*
 2012; 8 (8)

• A novel 13 base pair insertion in the sonic hedgehog ZRS limb enhancer (ZRS/LMBR1) causes preaxial polydactyly with triphalangeal thumb *Human Mutation*
 2012; 33 (7): 1063-1066

• Coding exons function as tissue-specific enhancers of nearby genes *Genome Research*
 2012; 22 (6): 1059-1068

• Control of Pelvic Girdle Development by Genes of the Pbx Family and Emx2 *Developmental Dynamics*
 2011; 240 (5): 1173-1189

• Human-specific loss of regulatory DNA and the evolution of human-specific traits *Nature*
 2011; 471 (7337): 216-219

• Noninvasive Monitoring of Placenta-Specific Transgene Expression by Bioluminescence Imaging *Plos One*
Human-specific loss of an androgen receptor enhancer is associated with the loss of vibrissae and penile spines.

80th Annual Meeting of the American Association of Physical Anthropologists
WILEY-BLACKWELL 2011: 252–252

Endangered Species Hold Clues to Human Evolution. JOURNAL OF HEREDITY
2010; 101 (4): 437-447

GREAT improves functional interpretation of cis-regulatory regions. NATURE BIOTECHNOLOGY
2010; 28 (5): 495-U155

Dispensability of mammalian DNA. GENOME RESEARCH
McLean, C., Bejerano, G.
2008; 18 (11): 1743-1751

Human genome ultraconserved elements are ultraslected. SCIENCE
2007; 317 (5840): 915-915

Comparative genomic analysis using the UCSC genome browser. Methods in molecular biology (Clifton, N.J.)
2007; 395: 17-34

C.B. Lowe, G. Bejerano, D. Haussler
2007; 104 (19): 8005-8010

Branch and bound computation of exact p-values. BIOINFORMATICS
Bejerano, G.
2006; 22 (17): 2158-2159

Identification and classification of conserved RNA secondary structures in the human genome. PLOS COMPUTATIONAL BIOLOGY
Pedersen, J. S., Bejerano, G., Siepel, A., Rosenbloom, K., Lindblad-Toh, K., Lander, E. S., Kent, J., Miller, W., Haussler, D.
2006; 2 (4): 251-262

The UCSC Genome Browser Database: update 2006. NUCLEIC ACIDS RESEARCH
2006; 34: D590-D598

A Distal Enhancer and an Ultraconserved Exon are Derived From a Novel Retroposon. Nature
2006; 441 (7089): 87-90

Forces Shaping the Fastest Evolving Regions in the Human Genome. PLoS Genetics
2006; 2 (10): e168

Computational screening of conserved genomic DNA in search of functional noncoding elements. NATURE METHODS
Bejerano, G., Siepel, A. C., Kent, W. J., Haussler, D.
2005; 2 (7): 535-545

Ultraconserved elements in insect genomes: A highly conserved intronic sequence implicated in the control of homothorax mRNA splicing. GENOME RESEARCH
• Evolutionarily Conserved Elements in Vertebrate, Fly, Worm, and Yeast Genomes Genome Research

• Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution NATURE
 2004; 432 (7018): 695-716

• Into the heart of darkness: large-scale clustering of human non-coding DNA BIOINFORMATICS
 Bejerano, G., Haussler, D., Blanchette, M.
 2004; 20: 40-48

• Into the heart of darkness: large-scale clustering of human non-coding DNA. Bioinformatics
 Bejerano, G., Haussler, D., Blanchette, M.
 2004; 20: i40-8

• Ultraconserved elements in the human genome SCIENCE
 Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W. J., Mattick, J. S., Haussler, D.
 2004; 304 (5675): 1321-1325

• Algoritms for variable length Markov chain modeling BIOINFORMATICS
 Bejerano, G.
 2004; 20 (5): 788-U729

• Efficient exact p-value computation for small sample, sparse and surprising categorical data J. Computational Biology
 G. Bejerano, N. Friedman, N. Tishby
 2004; 11 (5675): 867-886

• Extremely conserved non-coding sequences in vertebrate genomes 4th International Conference on Bioinformatics of Genome Regulation and Structure (BGRS 2004)
 Makunin, I., Stephen, S., Pheasant, M., Bejerano, G., Kent, J. W., HAUSSLER, H., Mattick, J. S.
 RUSSIAN ACAD SCI SIBERIAN BRANCH.2004: 138–140

• Extremely conserved non-coding sequences in the vertebrate genomes Proceedings of 4th International Conference on Bioinformatics of Genome Regulation and Structure
 I.V. Makunin, S. Stephen, M. Pheasant, G. Bejerano, W.J. Kent, D. Haussler, J.S. Mattick
 2004; BGRS

• Sequencing and comparative analysis of the chicken genome Nature
 International Chicken Genome Sequencing Consortium
 2004; 432 (7018): 695-716

• Discriminative feature selection via multiclass variable memory Markov model EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING
 Slonim, N., Bejerano, G., Fine, S., Tishby, N.
 2003; 2003 (2): 93-102

• A system for computer music generation by learning and improvisation in a particular style IEEE Computer J.
 O. Lartillot, S. Dubnov, G. Assayag, G. Bejerano
 2003; 36 (10): 73-80

• Efficient exact p-value computation and applications to biosequence analysis Proceedings of the 7th annual international conference on research in computational molecular biology
 G. Bejerano
 2003; RECOMB

• Discriminative feature selection via multiclass variable memory Markov models EURASIP J. Applied Signal Processing
 N. Slonim, G. Bejerano, S. Fine, N. Tishby
Discriminative feature selection via multiclass variable memory Markov models. *Proceedings of 19th International Conference on Machine Learning*
N. Slonim, G. Bejerano, S. Fine, N. Tishby
2002; ICML.

Bejerano, G., Seldin, Y., Margalit, H., Tishby, N.
Oxford UNIV PRESS. 2001: 927–34

Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. *CURRENT BIOLOGY*
Argaman, L., Hershberg, R., Vogel, J., Bejerano, G., Wagner, E. G., Margalit, H., Altuvia, S.
2001; 11 (12): 941-950

Variations on probabilistic suffix trees: statistical modeling and prediction of protein families. *BIOINFORMATICS*
Bejerano, G., Yona, G.
2001; 17 (1): 23-43

Unsupervised sequence segmentation by a mixture of switching variable memory Markov sources. *Proceedings of 18th International Conference on Machine Learning*
Y. Seldin, G. Bejerano, N. Tishby
2001; IMCL.

A Simple Hyper-Geometric Approach for Discovering Putative Transcription Factor Binding Sites. *1st Workshop on Algorithms in Bioinformatics Lecture Notes in Computer Science*
Y. Barash, G. Bejerano, N. Friedman
2001; WABI (2149): 278-293

PromEC: An updated database of Escherichia coli mRNA promoters with experimentally identified transcriptional start sites. *NUCLEIC ACIDS RESEARCH*
Hershberg, R., Bejerano, G., Santos-Zavaleta, A., Margalit, H.
2001; 29 (1): 277-277

Novel small RNA-encoding genes in Escherichia coli. *Current Biology*
L. Argaman, R. Hershberg, J. Vogel, G. Bejerano, G. Wagner, H. Margalit, S. Altuvia
2001; 11 (12): 941-950

Automated modeling of musical style. *Proceedings of the International Computer Music Conference*
O. Lartillot, S. Dubnov, G. Assayag, G. Bejerano
2001; ICMC.

Y. Seldin, G. Bejerano, N. Tishby
2001; INTERFACE.

Optimal amnesic probabilistic automata, or, how to learn and classify proteins in linear time and space. *Proceedings of the 4th annual international conference on research in computational molecular biology*
A. Apostolico, G. Bejerano
2000; RECOMB.

Optimal amnesic probabilistic automata, or, how to learn and classify proteins in linear time and space. *J. Computational Biology*
A. Apostolico, G. Bejerano
2000; 7 (3-4): 381-393

Modeling protein families using probabilistic suffix trees. *Proceedings of the 3rd annual international conference on research in computational molecular biology RECOMB*
G. Bejerano, G. Yona
1999