Bio

ACADEMIC APPOINTMENTS

- Emeritus Faculty, Acad Council, Biology
- Professor Emeritus, Biology

Publications

PUBLICATIONS

- A reversibly glycosylated polypeptide (RGP1) possibly involved in plant cell wall synthesis: Purification, gene cloning, and trans-Golgi localization. *Proceedings of the National Academy of Sciences of the United States of America*
 Dhugga, K. S., Tiwari, S. C., Ray, P. M.
 1997; 94 (14): 7679-7684

- Purification of 1,3-beta-D-glucan synthase activity from pea tissue - 2 polypeptides of 55 kDa and 70 kDa copurify with enzyme-activity. *European Journal of Biochemistry*
 Dhugga, K. S., Ray, P. M.
 1994; 220 (3): 943-953

- Molecular-size and separability features of pea cell-wall polysaccharides - Implications for models of primary wall structure. *Plant Physiology*
 Talbott, L. D., Ray, P. M.
 1992; 98 (1): 357-368

- Changes in molecular-size of previously deposited and newly synthesized pea cell-wall matrix polysaccharides - Effects of auxin and turgor. *Plant Physiology*
 Talbott, L. D., Ray, P. M.
 1992; 98 (1): 369-379

- Plant polypeptides reversibly glycosylated by UDP-glucose - Possible components of Golgi beta-glucan synthase in pea cells. *Journal of Biological Chemistry*
 Dhugga, K. S., Ulvskov, P., Gallagher, S. R., Ray, P. M.
 1991; 266 (32): 21977-21984

- Isoelectric-focusing of plant plasma-membrane proteins - Further evidence that a 55 kilodalton polypeptide is associated with beta-1,3-glucan synthase activity from pea. *Plant Physiology*
 Dhugga, K. S., Ray, P. M.
 1991; 95 (4): 1302-1305

- A 55 kDa plasma membrane-associated polypeptide is involved in beta-1,3-glucan synthase activity in pea tissue. *FEBS Letters*
 Dhugga, K. S., Ray, P. M.
 1991; 278 (2): 283-286
• AUXIN ENHANCEMENT OF MESSENGER-RNAS IN EPIDERMIS AND INTERNAL TISSUES OF THE PEA STEM AND ITS SIGNIFICANCE FOR CONTROL OF ELONGATION. *Plant Physiology*
Dietz, A., Kutschera, U., Ray, P. M.
1990; 93 (2): 432-438

• LIGHT-MEDIATED CHANGES IN 2 PROTEINS FOUND ASSOCIATED WITH PLASMA-MEMBRANE FRACTIONS FROM PEA STEM SECTIONS. *Proceedings of the National Academy of Sciences of the United States of America*
Gallagher, S., Short, T. W., Ray, P. M., Pratt, L. H., Briggs, W. R.
1988; 85 (21): 8003-8007

• EFFECT OF INDOLEACETIC ACID-STIMULATED AND FUSICOCCIN-STIMULATED PROTON EXTRUSION ON INTERNAL PH OF PEA INTERNODE CELLS. *Plant Physiology*
Talbott, L. D., Ray, P. M., Roberts, J. K.
1988; 87 (1): 211-216

• IN VolVEMENT OF MACROMOLECULE BIOSYNTHESIS IN AUXIN AND FUSICOCCIN ENHANCEMENT OF BETA-GLUCAN SYNTHASE ACTIVITY IN PEA. *Plant Physiology*
Ray, P. M.
1987; 85 (2): 523-528

• AUXIN AND FUSICOCCIN ENHANCEMENT OF BETA-GLUCAN SYNTHASE IN PEAS - AN INTRACELLULAR ENZYME-ACTIVITY APPARENTLY MODULATED BY PROTON EXTRUSION. *Plant Physiology*
Ray, P. M.
1985; 78 (3): 466-472

• REGULATION OF CYTOPLASMIC AND VACUOLAR PH IN MAIZE ROOT-TIPS UNDER DIFFERENT EXPERIMENTAL CONDITIONS. *Plant Physiology*
Roberts, J. K., Wemmer, D., Ray, P. M., Jardetzky, O.
1982; 69 (6): 1344-1347

• EARLY AUXIN-REGULATED POLYADENYLATED MESSENGER-RNA SEQUENCES IN PEA STEM TISSUE. *Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences*
Theologis, A., Ray, P. M.
1982; 79 (2): 418-421

• EVIDENCE FOR RECEPTOR FUNCTION OF AUXIN BINDING-SITES IN MAIZE - RED-LIGHT INHIBITION OF MESOCOTYL ELONGATION AND AUXIN BINDING. *Plant Physiology*
Walton, J. D., Ray, P. M.
1981; 68 (6): 1334-1338

• PH-DEPENDENT INTERACTIONS BETWEEN PEA CELL-WALL POLYMERS POSSIBLY INVOLVED IN WALL DEPOSITION AND GROWTH. *Plant Physiology*
Bates, G. W., Ray, P. M.
1981; 68 (1): 158-164

• LABELING OF PLASMA-MEMBRANE OF PEA CELLS BY A SURFACE-LOCALIZED GLUCAN SYNTHETASE. *Plant Physiology*
Anderson, R. L., Ray, P. M.
1978; 61 (5): 723-730

• AUXIN-BINDING SITES OF MAIZE COLEOPTILES ARE LOCALIZED ON MEMBRANES OF ENDOPLASMIC-RETICULUM. *Plant Physiology*
Ray, P. M.
1977; 59 (4): 594-599

• PHOSPHOLIPID-SYNTHESIZING ENZYMES ASSOCIATED WITH GOLGI DICTYOSOMES FROM PEA TISSUE. *Plant Physiology*
Montague, M. J., Ray, P. M.
1977; 59 (2): 225-230

• SPECIFICITY OF AUXIN-BINDING SITES ON MAIZE COLEOPTILE MEMBRANES AS POSSIBLE RECEPTOR-SITES FOR AUXIN ACTION. *Plant Physiology*
Ray, P. M., Dohrmann, U., Hertel, R.
CHARACTERIZATION OF NAPHTHALENEACETIC ACID BINDING TO RECEPTOR-SITES ON CELLULAR MEMBRANES OF MAIZE COLEOPTILE TISSUE

Ray, P. M., Dohrmann, U., Hertel, R.
1977; 59 (3): 357-364

RAPID AUXIN-INDUCED DECREASE IN FREE SPACE PH AND ITS RELATIONSHIP TO AUXIN-INDUCED GROWTH IN MAIZE AND PEA

Jacobs, M., Ray, P. M.
1976; 58 (2): 203-209

PROMOTION OF XYLOGLUCAN METABOLISM BY ACID PH

Jacobs, M., Ray, P. M.
1975; 56 (3): 373-376

TURNOVER OF CELL-WALL POLYSACCHARIDES IN ELONGATING PEA STEM SEGMENTS

Labavitch, J. M., Ray, P. M.
1974; 53 (5): 669-673

RELATIONSHIP BETWEEN PROMOTION OF XYLOGLUCAN METABOLISM AND INDUCTION OF ELONGATION BY INDOLEACETIC-ACID

Labavitch, J. M., Ray, P. M.
1974; 54 (4): 499-502

REGULATION OF BETA-GLUCAN SYNTHETASE-ACTIVITY BY AUXIN IN PEA STEM TISSUE. 2. METABOLIC REQUIREMENTS

Ray, P. M.
1973; 51 (4): 609-614

REGULATION OF BETA-GLUCAN SYNTHETASE-ACTIVITY BY AUXIN IN PEA STEM TISSUE. 1. KINETIC ASPECTS

Ray, P. M.
1973; 51 (4): 601-608

ISOLATION OF BETA-GLUCAN SYNTHETASE PARTICLES FROM PLANT CELLS AND IDENTIFICATION WITH GOLGI MEMBRANES

Ray, P. M., Shininge, T. L., Ray, M. M.
1969; 64 (2): 605-?