The central question behind our work is how the centrosome and primary cilium control cell function and influence development, and how defects in these structures cause a remarkable range of human disease, ranging from cancer, polycystic kidney disease, and obesity, to neurocognitive defects including mental retardation, schizophrenia, and dyslexia.

The centrosome consists of a pair of centrioles and pericentriolar material and organizes the cytoplasmic microtubules of most animal cells. Most importantly, the mother centriole (the older of the two in the pair) nucleates the formation of a primary cilium in most cells in the body. First seen by cell biologists in the 1950's, the primary cilium was ignored for many years until a combination of human and model organism genetics revealed that it is a critical sensory organelle with functions...
in many important processes. Defects in primary cilium structure and function cause a set of human conditions, called ciliopathies, that share a set of phenotypes that reflect the importance of the cilium in signaling pathways.

There are three main projects in the lab:

1) Ciliary biogenesis and function. In addition to the microtubules making up the interphase array and the mitotic spindle, many animal cells make a specialized microtubule structure, the primary cilium. This is a single, non-motile cilium that is able to act as a transducer of mechanical and chemical signals - sort of a cellular antenna. The microtubules of the ciliary axoneme grow directly from a centriole at their base, this centriole is often called a basal body. Some epithelial cells in the trachea, oviduct and brain produce hundreds of motile cilia on their surface, each with a centriole at their base. We are studying both the primary cilium and multiciliated cells for clues into ciliary structure and function, and centriole formation.

2) Cell cycle control of centrosome duplication. We have shown that duplication of the centrosome, the microtubule organizing center of animal cells, is dependent on the cell cycle kinase cdk2, and on cell cycle-specific proteolysis. We are working to determine the molecular mechanisms of centrosome duplication and to understand how centrosome duplication is controlled so that it happens once and only once per cell cycle. Cancer cells often have aberrant centrosome numbers, and we are investigating the relationship between aberrant centrosome number and the genome instability that is common in cancer cells.

3) Microtubule nucleation and organization. Microtubules are polymers of tubulin, which is a heterodimer of alpha-tubulin and beta-tubulin. We have identified a remarkable complex of proteins associated with a third type of tubulin, gamma-tubulin. Gamma-tubulin and its associated proteins are localized to the centrosome and are critical for initiation, or nucleation, of microtubule assembly. The gamma-tubulin complex (gammaTuRC) is a very large, ring-shaped complex and contains at least 6 proteins in addition to gamma-tubulin. We are determining the role of gamma-tubulin and its associated proteins in microtubule nucleation and organization.

Teaching

COURSES

2015-16
- Core Molecular Biology Laboratory: BIO 44X (Aut, Win)
- Foundations in Experimental Biology: BIOS 200 (Aut)

2014-15
- Biology PhD Lab Rotation: BIO 299 (Spr, Sum)
- Core Molecular Biology Laboratory: BIO 44X (Aut, Win)

2013-14
- Core Molecular Biology Laboratory: BIO 44X (Aut, Win)
- Foundations in Experimental Biology: BIOS 200 (Aut)

2012-13
- Core Molecular Biology Laboratory: BIO 44X (Aut, Win)
- The Nucleus: BIOS 200 (Aut)

STANFORD ADVISEES

Postdoctoral Faculty Sponsor
Jonathan Geisinger, Roberta Sala, Krishnakumar Vasudevan, Jennifer Wang

Doctoral (Program)
Publications

Zeta-Tubulin Is a Member of a Conserved Tubulin Module and Is a Component of the Centriolar Basal Foot in Multiciliated Cells *CURRENT BIOLOGY*
2015; 25 (16): 2177-2183

A High-Enrollment Course-Based Undergraduate Research Experience Improves Student Conceptions of Scientific Thinking and Ability to Interpret Data *CBE-LIFE SCIENCES EDUCATION*
2015; 14 (2)

Observing planar cell polarity in multiciliated mouse airway epithelial cells. *Methods in cell biology*
Vladar, E. K., Lee, Y. L., Stearns, T., Axelrod, J. D.
2015; 127: 37-54

Sperm Centrosomes: Kiss Your Asterless Goodbye, for Fertility's Sake. *Current biology : CB*
Schatten, G., Stearns, T.
2015; 25 (24): R1178-81

Probing mammalian centrosome structure using BioID proximity-dependent biotinylation *CENTROsome & CENTRIole*
Firat-Karalar, E. N., Stearns, T.
2015; 129: 153-170

Cby1 promotes Ahi1 recruitment to a ring-shaped domain at the centriole-cilium interface and facilitates proper cilium formation and function *MOLECULAR BIOLOGY OF THE CELL*
2014; 25 (19): 2919-2933

Proteomic analysis of mammalian sperm cells identifies new components of the centrosome *JOURNAL OF CELL SCIENCE*
Firat-Karalar, E. N., Sante, J., Elliott, S., Stearns, T.
2014; 127 (19): 4128-4133

The centriole duplication cycle *PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES*
Firat-Karalar, E. N., Stearns, T.
2014; 369 (1650)

Centrosome-Kinase Fusions Promote Oncogenic Signaling and Disrupt Centrosome Function in Myeloproliferative Neoplasms *PLOS ONE*
Lee, J. Y., Hong, W., Majeti, R., Stearns, T.
2014; 9 (3)

Proximity Interactions among Centrosome Components Identify Regulators of Centriole Duplication *CURRENT BIOLOGY*
Firat-Karalar, E. N., Rauniyar, N., Yates, J. R., Stearns, T.
2014; 24 (6): 664-670

Myb promotes centriole amplification and later steps of the multiciliogenesis program *DEVELOPMENT*

• FOP Is a Centriolar Satellite Protein Involved in Ciliogenesis. *PLOS ONE* Lee, J. Y., Stearns, T. 2013; 8 (3)

• The centriolar satellite proteins Cep72 and Cep290 interact and are required for recruitment of BBS proteins to the cilium. *Molecular Biology of the Cell* Stowe, T. R., Wilkinson, C. J., Iqbal, A., Stearns, T. 2012; 23 (17): 3322-3335

• Cep120 is asymmetrically localized to the daughter centriole and is essential for centriole assembly JOURNAL OF CELL BIOLOGY
Mahjoub, M. R., Xie, Z., Stearns, T.
2010; 191 (2): 331-346

• The life cycle of centrioles. Cold Spring Harbor symposia on quantitative biology
Hatch, E., Stearns, T.
2010; 75: 425-431

• STEM CELLS A fateful age gap NATURE
Stearns, T.
2009; 461 (7266): 891-892

• Centriole Age Underlies Asynchronous Primary Cilium Growth in Mammalian Cells CURRENT BIOLOGY
Anderson, C. T., Stearns, T.
2009; 19 (17): 1498-1502

• Polo Kinase and Separase Regulate the Mitotic Licensing of Centriole Duplication in Human Cells DEVELOPMENTAL CELL
Tsou, M. B., Wang, W., George, K. A., Uryu, K., Stearns, T., Jallepalli, P. V.
2009; 17 (3): 344-354

• Plk1-Dependent Recruitment of gamma-Tubulin Complexes to Mitotic Centrosomes Involves Multiple PCM Components PLOS ONE
Haren, L., Stearns, T., Luders, J.
2009; 4 (6)

• Primary cilia: Cellular sensors for the skeleton ANATOMICAL RECORD-ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY
2008; 291 (9): 1074-1078

• Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
2007; 104 (33): 13325-13330

• Molecular characterization of centriole assembly in ciliated epithelial cells JOURNAL OF CELL BIOLOGY
Vladar, E. K., Stearns, T.
2007; 178 (1): 31-42

• Opinion - Microtubule-organizing centres: a re-evaluation NATURE REVIEWS MOLECULAR CELL BIOLOGY
Luders, J., Stearns, T.
2007; 8 (2): 161-167

• Primary cilia: Mechanosensory organelles in bone cells.
WILEY-BLACKWELL.2006: S39-S39

• Mechanism limiting centrosome duplication to once per cell cycle NATURE
Tsou, M. B., Stearns, T.
2006; 442 (7105): 947-951

• Controlling centrosome number: licenses and blocks CURRENT OPINION IN CELL BIOLOGY
Tsou, M. F., Stearns, T.
2006; 18 (1): 74-78

• GCP-WD is a gamma-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation NATURE CELL BIOLOGY
Luders, J., Patel, U. K., Stearns, T.
2006; 8 (2): 137-U10

• Insights into microtubule nucleation from the crystal structure of human gamma-tubulin NATURE
Aldaz, H., Rice, L. M., Stearns, T., Agard, D. A.
2005; 435 (7041): 523-527
Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC CELL BIOLOGY
Wong, C., Stearns, T.
2005; 6

Centrosome number is controlled by a centrosome-intrinsic block to reduplication. NATURE CELL BIOLOGY
Wong, C., Stearns, T.
2003; 5 (6): 539-544

Centrosome biology: A SAS-sy centriole in the cell cycle. CURRENT BIOLOGY
Wong, C., Stearns, T.
2003; 13 (9): R351-R352

Controlling centrosome number: Evidence for a block to centrosome over-duplication
Wong, C., Stearns, T.
WILEY-LISS.2003: 192-192

Centrosome structure and duplication
Stearns, T., Chang, P., Patel, U., Wong, C.
WILEY-LISS.2003: 157-157

Epsilon-tubulin is required for centrosome duplication and structure
Chang, P., Stearns, T.
WILEY-LISS.2003: 173-173

epsilon-tubulin is required for centriole duplication and microtubule organization. NATURE CELL BIOLOGY
Chang, P., Giddings, T. H., Winey, M., Stearns, T.
2003; 5 (1): 71-76

Characterization of delta-tubulin in animal cells
Ruster, K. S., Chang, P., Stearns, T.
AMER SOC CELL BIOLOGY.2002: 197A-198A

Controlling centrosome number: Evidence for a block to centrosome over-duplication
Wong, C., Stearns, T.
AMER SOC CELL BIOLOGY.2002: 50A-50A

gamma-tubulin. CURRENT BIOLOGY
Patel, U., Stearns, T.
2002; 12 (12): R408-R409

Systematic structure-function analysis of the small GTPase Arf1 in yeast. MOLECULAR BIOLOGY OF THE CELL
Click, E. S., Stearns, T., Botstein, D.
2002; 13 (5): 1652-1664

GCP5 and GCP6: Two new members of the human gamma-tubulin complex. MOLECULAR BIOLOGY OF THE CELL
2001; 12 (11): 3340-3352

Centrosome duplication: A centriolar pas de deux. CELL
Stearns, T.
2001; 105 (4): 417-420

Molecular mechanisms of centrosome duplication
Piard-Ruster, K. S., Reynolds-Lacey, K., Chang, P., Stearns, T.
AMER SOC CELL BIOLOGY.2000: 342A-342A

Does the presence of multiple centrosomes lead to aneuploidy?
Wong, C. C., Stearns, T.
AMER SOC CELL BIOLOGY.2000: 203A-203A
• Delta-tubulin and epsilon-tubulin: new tubulins at the centrosome
 Chang, P., Stearns, T.
 AMER SOC CELL BIOLOGY.2000: 552A-552A

• The DNA damage checkpoint signal in budding yeast is nuclear limited MOLECULAR CELL
 Demeter, J., Lee, S. E., Haber, J. E., Stearns, T.
 2000; 6 (2): 487-492

• delta-Tubulin and epsilon-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function NATURE CELL BIOLOGY
 Chang, P., Stearns, T.
 2000; 2 (1): 30-35

• Arrest, adaptation, and recovery following a chromosome double-strand break in Saccharomyces cerevisiae COLD SPRING HARBOR SYMPOSA ON QUANTITATIVE BIOLOGY
 2000; 65: 303-314

• gamma-Tubulin complexes: size does matter TRENDS IN CELL BIOLOGY
 Jeng, R., Stearns, T.
 1999; 9 (9): 339-342

• Components of an SCE ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle GENES & DEVELOPMENT
 Freed, E., Lacey, K. R., Huie, P., Lyapina, S. A., Deshaies, R. J., Stearns, T., Jackson, P. K.
 1999; 13 (17): 2242-2257

• Primer - The centrosome CURRENT BIOLOGY
 Urbani, L., Stearns, T.
 1999; 9 (9): R315-R317

• Cyclin-dependent kinase control of centrosome duplication PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
 Lacey, K. R., Jackson, P. K., Stearns, T.
 1999; 96 (6): 2817-2822

• Alp1p, a CLIP-170 domain-containing protein, is functionally and physically associated with alpha-tubulin JOURNAL OF CELL BIOLOGY
 Feierbach, B., Nogales, E., Downing, K. H., Stearns, T.
 1999; 144 (1): 113-124

• Cytoskeletal dynamics in yeast METHODS IN CELL BIOLOGY, VOL 58
 Carminati, J. L., Stearns, T.
 1999; 58: 87-105

• Centrosome reduction during mouse spermiogenesis DEVELOPMENTAL BIOLOGY
 Manandhar, G., Sutovsky, P., Joshi, H. C., Stearns, T., Schatten, G.
 1998; 203 (2): 424-434

• The mammalian gamma-tubulin complex contains homologues of the yeast spindle pole body components Spc97p and Spc98p JOURNAL OF CELL BIOLOGY
 Murphy, S. M., Urbani, L., Stearns, T.
 1998; 141 (3): 663-674

• Parallel analysis of genetic selections using whole genome oligonucleotide arrays PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
 1998; 95 (7): 3752-3757

• Expression of amino- and carboxyl-terminal gamma- and alpha-tubulin mutants in cultured epithelial cells JOURNAL OF BIOLOGICAL CHEMISTRY
 Leask, A., Stearns, T.
 1998; 273 (5): 2661-2668
• Nucleation and capture of large cell surface-associated microtubule arrays that are not located near centrosomes in certain cochlear epithelial cells. *Journal of Anatomy*
 1998; 192: 119-130

• Cytoskeleton: Anatomy of an organizing center. *Current Biology*
 Marschall, L. G., Stearns, T.
 1997; 7 (12): R754-R756

• The cell center at 100. *Cell*
 Stearns, T., Winey, M.
 1997; 91 (3): 303-309

• Motoring to the finish: Kinesin and dynein work together to orient the yeast mitotic spindle. *Journal of Cell Biology*
 Stearns, T.
 1997; 138 (5): 957-960

• Tubulin subunits exist in an activated conformational state generated and maintained by protein cofactors. *Journal of Cell Biology*
 1997; 138 (4): 821-832

• Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. *Journal of Cell Biology*
 Carminati, J. L., Stearns, T.
 1997; 138 (3): 629-641

• Synaptically coupled central nervous system neurons lack centrosomal gamma-tubulin. *Neuroscience Letters*
 Leask, A., Obrietan, K., Stearns, T.
 1997; 229 (1): 17-20

• Centrosomes isolated from Spisula solidissima oocytes contain rings and an unusual stoichiometric ratio of alpha/beta tubulin. *Journal of Cell Biology*
 Vogel, J. M., Stearns, T., Rieder, C. L., Palazzo, R. E.
 1997; 137 (1): 193-202

• Centrosomal deployment of gamma-tubulin and pericentrin: Evidence for a microtubule-nucleating domain and a minus-end docking domain in certain mouse epithelial cells. *Cell Motility and the Cytoskeleton*
 Mogensen, M. M., Mackie, J. B., Doxsey, S. J., Stearns, T., Tucker, J. B.
 1997; 36 (3): 276-290

• Analysis of Tub4p, a yeast gamma-tubulin-like protein: Implications for microtubule-organizing center function. *Journal of Cell Biology*
 Marschall, L. G., Jeng, R. L., Mulholland, J., Stearns, T.
 1996; 134 (2): 443-454

• Cytoskeleton: Microtubule nucleation takes shape. *Current Biology*
 Murphy, S. M., Stearns, T.
 1996; 6 (6): 642-644

 Navara, C. S., Zoran, S. S., Salisbury, J. L., Simerly, C., Stearns, T., Schatten, G.

• Green Fluorescent Protein - The Green-Revolution. *Current Biology*
 Stearns, T.
 1995; 5 (3): 262-264

• Mutational Analysis of Saccharomyces-Cerevisiae Arf1. *Journal of Biological Chemistry*
 Kahn, R. A., Clark, J., Rulka, C., Stearns, T., Zhang, C. J., Randazzo, P. A., Terui, T., Cavenagh, M.
 1995; 270 (1): 143-150

• The Form and the Substance. *Nature Medicine*
Stearns, T.
1995; 1 (1): 19-20

• IN-VITRO RECONSTITUTION OF CENTROSOME ASSEMBLY AND FUNCTION - THE CENTRAL ROLE OF GAMMA-TUBULIN. *CELL*
Stearns, T., Kirschner, M.
1994; 76 (4): 623-637

• SPECIFICITY DOMAINS DISTINGUISH THE RAS-RELATED GTPASES YPT1 AND SEC4. *NATURE*
Dunn, B., Stearns, T., Botstein, D.
1993; 362 (6420): 563-565

• Spindle positioning and cell polarity. *Current biology*
Hyman, A. A., Stearns, T.
1992; 2 (9): 469-471

• At the heart of the organizing center. *Current biology*
Cande, W. Z., Stearns, T.
1991; 1 (4): 254-256

• GAMMA-TUBULIN IS A HIGHLY CONSERVED COMPONENT OF THE CENTROSOME. *CELL*
Stearns, T., Evans, L., Kirschner, M.
1991; 65 (5): 825-836

• ADP RIBOSYLATION FACTOR IS AN ESSENTIAL PROTEIN IN SACCHAROMYCES-CEREVISIAE AND IS ENCODED BY 2 GENES. *MOLECULAR AND CELLULAR BIOLOGY*
Stearns, T., Kahn, R. A., Botstein, D., Hoyt, M. A.
1990; 10 (12): 6690-6699

• ADP-RIBOSYLATION FACTOR IS FUNCTIONALLY AND PHYSICALLY ASSOCIATED WITH GOLGI-COMPLEX. *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
Stearns, T., Willingham, M. C., Botstein, D., Kahn, R. A.
1990; 87 (3): 1238-1242

• YEAST MUTANTS SENSITIVE TO ANTIMICROTUBULE DRUGS DEFINE 3 GENES THAT AFFECT MICROTUBULE FUNCTION. *GENETICS*
Stearns, T., Hoyt, M. A., Botstein, D.
1990; 124 (2): 251-262

• The cytoskeleton of Saccharomyces cerevisiae. *Current opinion in cell biology*
BARNES, G., Drubin, D. G., Stearns, T.
1990; 2 (1): 109-115

• CHROMOSOME INSTABILITY MUTANTS OF SACCHAROMYCES-CEREVISIAE THAT ARE DEFECTIVE IN MICROTUBULE-MEDIATED PROCESSES. *MOLECULAR AND CELLULAR BIOLOGY*
Hoyt, M. A., Stearns, T., Botstein, D.
1990; 10 (1): 223-234

• MANIPULATING YEAST GENOME USING PLASMID VECTORS. *METHODS IN ENZYMOLGY*
Stearns, T., Ma, H., Botstein, D.
1990; 185: 280-297

• THE YEAST MICROTUBULE CYTOSKELETON - GENETIC APPROACHES TO STRUCTURE AND FUNCTION. *CELL MOTILITY AND THE CYTOSKELETON*
Stearns, T.

• DNA TOPOISOMERASE-II MUST ACT AT MITOSIS TO PREVENT NONDISJUNCTION AND CHROMOSOME BREAKAGE. *MOLECULAR AND CELLULAR BIOLOGY*
Holm, C., Stearns, T., Botstein, D.
1989; 9 (1): 159-168

• FLUORESCENCE MICROSCOPY METHODS FOR YEAST. *METHODS IN CELL BIOLOGY*
1989; 31: 357-435

UNLINKED NONCOMPLEMENTATION - ISOLATION OF NEW CONDITIONAL-LETHAL MUTATIONS IN EACH OF THE TUBULIN GENES OF SACCHAROMYCES-CEREVISIAE *GENETICS*
Stearns, T., Botstein, D.
1988; 119 (2): 249-260

DIVERSE BIOLOGICAL FUNCTIONS OF SMALL GTP-BINDING PROTEINS IN YEAST *COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY*
Botstein, D., Segev, N., Stearns, T., Hoyt, M. A., Holden, J., Kahn, R. A.
1988; 53: 629-636