CURRENT RESEARCH AND SCHOLARLY INTERESTS
The central question behind our work is how the centrosome and primary cilium control cell function and influence development, and how defects in these structures cause a remarkable range of human disease, ranging from cancer, polycystic kidney disease, and obesity, to neurocognitive defects including mental retardation, schizophrenia, and dyslexia.

The centrosome consists of a pair of centrioles and pericentriolar material and organizes the cytoplasmic microtubules of most animal cells. Most importantly, the mother centriole (the older of the two in the pair) nucleates the formation of a primary cilium in most cells in the body. First seen by cell biologists in the 1950's, the primary cilium was ignored for many years until a combination of human and model organism genetics revealed that it is a critical sensory organelle with functions in many important processes. Defects in primary cilium structure and function cause a set of human conditions, called ciliopathies, that share a set of phenotypes that reflect the importance of the cilium in signaling pathways.
There are three main projects in the lab:

1) Ciliary biogenesis and function. In addition to the microtubules making up the interphase array and the mitotic spindle, many animal cells make a specialized microtubule structure, the primary cilium. This is a single, non-motile cilium that is able to act as a transducer of mechanical and chemical signals - sort of a cellular antenna. The microtubules of the ciliary axoneme grow directly from a centriole at their base, this centriole is often called a basal body. Some epithelial cells in the trachea, oviduct and brain produce hundreds of motile cilia on their surface, each with a centriole at their base. We are studying both the primary cilium and multiciliated cells for clues into ciliary structure and function, and centriole formation.

2) Cell cycle control of centrosome duplication. We have shown that duplication of the centrosome, the microtubule organizing center of animal cells, is dependent on the cell cycle kinase cdk2, and on cell cycle-specific proteolysis. We are working to determine the molecular mechanisms of centrosome duplication and to understand how centrosome duplication is controlled so that it happens once and only once per cell cycle. Cancer cells often have aberrant centrosome numbers, and we are investigating the relationship between aberrant centrosome number and the genome instability that is common in cancer cells.

3) Microtubule nucleation and organization. Microtubules are polymers of tubulin, which is a heterodimer of alpha-tubulin and beta-tubulin. We have identified a remarkable complex of proteins associated with a third type of tubulin, gamma-tubulin. Gamma-tubulin and its associated proteins are localized to the centrosome and are critical for initiation, or nucleation, of microtubule assembly. The gamma-tubulin complex (gammaTuRC) is a very large, ring-shaped complex and contains at least 6 proteins in addition to gamma-tubulin. We are determining the role of gamma-tubulin and its associated proteins in microtubule nucleation and organization.

Teaching

COURSES

2017-18
• I, Biologist: Diversity Improves the Science of Biology: BIO 52, CSRE 52H (Spr)
• Introduction to Laboratory Research in Cell and Molecular Biology: BIO 45 (Aut, Win)
• Science as a Creative Process: APPPHYS 61, BIO 61 (Aut)

2016-17
• I, Biologist: Diversity Improves the Science of Biology: BIO 52 (Spr)
• Introduction to Laboratory Research in Cell and Molecular Biology: BIO 45 (Aut, Win)

2015-16
• Core Molecular Biology Laboratory: BIO 44X (Aut, Win)
• Foundations in Experimental Biology: BIOS 200 (Aut)

2014-15
• Biology PhD Lab Rotation: BIO 299 (Spr, Sum)
• Core Molecular Biology Laboratory: BIO 44X (Aut, Win)

STANFORD ADVISEES

Postdoctoral Faculty Sponsor
Eva Fischer, Jonathan Geisinger, Jessica Nowicki, Roberta Sala, Krishnakumar Vasudevan, Jennifer Wang

Doctoral (Program)
Claire Baumer, Kaitlin Ching, Olga Cormier, Miranda Stratton
Orals Evaluator
Miguel Garcia

Doctoral Dissertation Reader (AC)
Sean Beckwith, Devon Chandler-Brown, Megan Conlon, Mireille Kamariza, Ivan Millan, James Russell, Ariana Sanchez, Richard She, Jonathan Turner

Doctoral Dissertation Advisor (AC)
Claire Baumer, Garrison Buss, Kaitlin Ching, Olga Cormier, Miranda Stratton

GRADUATE AND FELLOWSHIP PROGRAM AFFILIATIONS
• Biology (School of Humanities and Sciences) (Phd Program)
• Cancer Biology (Phd Program)
• Genetics (Phd Program)

Publications

PUBLICATIONS

• Using Yeast to Determine the Functional Consequences of Mutations in the Human p53 Tumor Suppressor Gene: An Introductory Course-Based Undergraduate Research Experience in Molecular and Cell Biology BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION
 2017; 45 (2): 161-178

• Sperm Centrosomes: Kiss Your Asterless Goodbye, for Fertility's Sake. Current biology
 Schatten, G., Stearns, T.
 2015; 25 (24): R1178-81

• MDM1 is a microtubule-binding protein that negatively regulates centriole duplication. Molecular biology of the cell
 Van de Mark, D., Kong, D., Loncarek, J., Stearns, T.
 2015; 26 (21): 3788-3802

• Zeta-Tubulin Is a Member of a Conserved Tubulin Module and Is a Component of the Centriolar Basal Foot in Multiciliated Cells CURRENT BIOLOGY
 2015; 25 (16): 2177-2183

• A High-Enrollment Course-Based Undergraduate Research Experience Improves Student Conceptions of Scientific Thinking and Ability to Interpret Data CBE-LIFE SCIENCES EDUCATION
 2015; 14 (2)

• Observing planar cell polarity in multiciliated mouse airway epithelial cells. Methods in cell biology
 Vladar, E. K., Lee, Y. L., Stearns, T., Axelrod, J. D.
 2015; 127: 37-54

• Probing mammalian centrosome structure using BioID proximity-dependent biotinylation CENTROSOME & CENTRIOLE
 Firat-Karalar, E. N., Stearns, T.
 2015; 129: 153-170

• Chy1 promotes Ahi1 recruitment to a ring-shaped domain at the centriole-cilium interface and facilitates proper cilium formation and function MOLECULAR BIOLOGY OF THE CELL
 2014; 25 (19): 2919-2933

• Proteomic analysis of mammalian sperm cells identifies new components of the centrosome JOURNAL OF CELL SCIENCE
 Firat-Karalar, E. N., Sante, J., Elliott, S., Stearns, T.
 2014; 127 (19): 4128-4133
• The centriole duplication cycle *PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES*
 Firat-Karalar, E. N., Stearns, T.
 2014; 369 (1650)

• Proximity Interactions among Centrosome Components Identify Regulators of Centriole Duplication *CURRENT BIOLOGY*
 Firat-Karalar, E. N., Rauniyar, N., Yates, J. R., Stearns, T.
 2014; 24 (6): 664-670

• Centrosome-kinase fusions promote oncogenic signaling and disrupt centrosome function in myeloproliferative neoplasms. *PloS one*
 Lee, J. Y., Hong, W., Majeti, R., Stearns, T.
 2014; 9 (3)

• Myb promotes centriole amplification and later steps of the multiciliogenesis program *DEVELOPMENT*
 2013; 140 (20): 4277-4286

• Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites *NATURE*
 2013; 502 (7470): 254-?

• Myb promotes centriole amplification and later steps of the multiciliogenesis program. *Development*
 2013; 140 (20): 4277-4286

• FOP Is a Centriolar Satellite Protein Involved in Ciliogenesis *PLOS ONE*
 Lee, J. Y., Stearns, T.
 2013; 8 (3)

• The Rilp-like proteins Rilpl1 and Rilpl2 regulate ciliary membrane content. *Molecular biology of the cell*
 Schaub, J. R., Stearns, T.
 2013; 24 (4): 453-464

• Transcriptional Program of Ciliated Epithelial Cells Reveals New Cilium and Centrosome Components and Links to Human Disease *PLOS ONE*
 2012; 7 (12)

• Supernumerary Centrosomes Nucleate Extra Cilia and Compromise Primary Cilium Signaling *CURRENT BIOLOGY*
 Mahjoub, M. R., Stearns, T.
 2012; 22 (17): 1628-1634

• The centriolar satellite proteins Cep72 and Cep290 interact and are required for recruitment of BBS proteins to the cilium *MOLECULAR BIOLOGY OF THE CELL*
 2012; 23 (17): 3322-3335

• STED Microscopy with Optimized Labeling Density Reveals 9-Fold Arrangement of a Centriole Protein *BIOPHYSICAL JOURNAL*
 2012; 102 (12): 2926-2935

• Mechanosensing by the Primary Cilium: Deletion of Kif3A Reduces Bone Formation Due to Loading *PLOS ONE*
 2012; 7 (5)

• A crucial requirement for Hedgehog signaling in small cell lung cancer *NATURE MEDICINE*
 2011; 17 (11): 1504-U1506

• Curcumin Inhibits Growth of Saccharomyces cerevisiae through Iron Chelation *EUKARYOTIC CELL*
 Minear, S., O'Donnell, A. F., Ballew, A., Giaever, G., Nislow, C., Stearns, T., Cyert, M. S.
The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries
NATURE CELL BIOLOGY
Nigg, E. A., Stearns, T.
2011; 13 (10): 1154-1160

STED Super-resolution Microscopy in Drosophila Tissue and in Mammalian Cells
Conference on Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications III
Lau, L., Lee, Y. L., Matis, M., Axelrod, J., Stearns, T., Moerner, W. E.
SPIE-INT SOC OPTICAL ENGINEERING. 2011

Cep152 interacts with Plk4 and is required for centriole duplication
JOURNAL OF CELL BIOLOGY
Hatch, E. M., Kulukian, A., Holland, A. J., Cleveland, D. W., Stearns, T.
2010; 191 (4): 721-729

Cep120 is asymmetrically localized to the daughter centriole and is essential for centriole assembly
JOURNAL OF CELL BIOLOGY
Mahjoub, M. R., Xie, Z., Stearns, T.
2010; 191 (2): 331-346

The life cycle of centrioles.
Cold Spring Harbor sympoisa on quantitative biology
Hatch, E., Stearns, T.
2010; 75: 425-431

STEM CELLS A fateful age gap
NATURE
Stearns, T.
2009; 461 (7266): 891-892

Centriole Age Underlies Asynchronous Primary Cilium Growth in Mammalian Cells
CURRENT BIOLOGY
Anderson, C. T., Stearns, T.
2009; 19 (17): 1498-1502

Polo Kinase and Separase Regulate the Mitotic Licensing of Centriole Duplication in Human Cells
DEVELOPMENTAL CELL
Tsou, M. B., Wang, W., George, K. A., Uryu, K., Stearns, T., Jallepalli, P. V.
2009; 17 (3): 344-354

Plk1-Dependent Recruitment of gamma-Tubulin Complexes to Mitotic Centrosomes Involves Multiple PCM Components
PLOS ONE
Haren, L., Stearns, T., Luders, J.
2009; 4 (6)

Primary cilia: Cellular sensors for the skeleton
37th International Sun Valley Workshop on Skeletal Tissue Biology
WILEY-BLACKWELL. 2008: 1074–78

Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
2007; 104 (33): 13325-13330

Molecular characterization of centriole assembly in ciliated epithelial cells
JOURNAL OF CELL BIOLOGY
Vladar, E. K., Stearns, T.
2007; 178 (1): 31-42

Opinion - Microtubule-organizing centres: a re-evaluation
NATURE REVIEWS MOLECULAR CELL BIOLOGY
Luders, J., Stearns, T.
2007; 8 (2): 161-167

Primary cilia: Mechanosensory organelles in bone cells.
28th Annual Meeting of the American-Society-for-Bone-and-Mineral-Research
WILEY-BLACKWELL. 2006: S39–S39

Mechanism limiting centrosome duplication to once per cell cycle
NATURE
- Tsou, M. B., Stearns, T. 2006; 442 (7105): 947-951
 - Controlling centrosome number: licenses and blocks CURRENT OPINION IN CELL BIOLOGY
 Tsou, M. F., Stearns, T. 2006; 18 (1): 74-78
 - GCP-WD is a gamma-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation NATURE CELL BIOLOGY
 - Insights into microtubule nucleation from the crystal structure of human gamma-tubulin NATURE
 - Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure BMC CELL BIOLOGY
 Wong, C., Stearns, T. 2005; 6
 - Centrosome number is controlled by a centrosome-intrinsic block to reduplication NATURE CELL BIOLOGY
 Wong, C., Stearns, T. 2003; 5 (6): 539-544
 - Centrosome biology: A SAS-sy centriole in the cell cycle CURRENT BIOLOGY
 Wong, C., Stearns, T. 2003; 13 (9): R351-R352
 - Controlling centrosome number: Evidence for a block to centrosome over-duplication EMBO/EMBL Conference on Centrosomes and Spindle Pole Bodies
 Wong, C., Stearns, T.
 WILEY-LISS.2003: 192–92
 - Centrosome structure and duplication EMBO/EMBL Conference on Centrosomes and Spindle Pole Bodies
 Stearns, T., Chang, P., Patel, U., Wong, C.
 WILEY-LISS.2003: 157–57
 - Epsilon-tubulin is required for centrosome duplication and structure EMBO/EMBL Conference on Centrosomes and Spindle Pole Bodies
 Chang, P., Stearns, T.
 WILEY-LISS.2003: 173–73
 - epsilon-tubulin is required for centriole duplication and microtubule organization NATURE CELL BIOLOGY
 Chang, P., Giddings, T. H., Winey, M., Stearns, T.
 2003; 5 (1): 71-76
 - Characterization of delta-tubulin in animal cells 42nd Annual Meeting of the American-Society-for-Cell-Biology
 Ruster, K. S., Chang, P., Stearns, T.
 AMER SOC CELL BIOLOGY.2002: 197A–198A
 - Controlling centrosome number: Evidence for a block to centrosome over-duplication 42nd Annual Meeting of the American-Society-for-Cell-Biology
 Wong, C., Stearns, T.
 AMER SOC CELL BIOLOGY.2002: 50A–50A
 - gamma-tubulin CURRENT BIOLOGY
 Patel, U., Stearns, T.
 2002; 12 (12): R408-R409
 - Systematic structure-function analysis of the small GTPase Arf1 in yeast MOLECULAR BIOLOGY OF THE CELL
 Click, E. S., Stearns, T., Botstein, D.
 2002; 13 (5): 1652-1664
 - GCP5 and GCP6: Two new members of the human gamma-tubulin complex MOLECULAR BIOLOGY OF THE CELL
• Centrosome duplication: A centriolar pas de deux *CELL*
 Stearns, T.
 2001; 105 (4): 417-420

• Molecular mechanisms of centrosome duplication
 Piard-Ruster, K. S., Reynolds-Lacey, K., Chang, P., Stearns, T.
 AMER SOC CELL BIOLOGY. 2000: 342A–342A

• Does the presence of multiple centrosomes lead to aneuploidy?
 Wong, C. C., Stearns, T.
 AMER SOC CELL BIOLOGY. 2000: 203A–203A

• Delta-tubulin and epsilon-tubulin: new tubulins at the centrosome
 Chang, P., Stearns, T.
 AMER SOC CELL BIOLOGY. 2000: 552A–552A

• The DNA damage checkpoint signal in budding yeast is nuclear limited *MOLECULAR CELL*
 Demeter, J., Lee, S. E., Haber, J. E., Stearns, T.
 2000; 6 (2): 487-492

• Delta-Tubulin and epsilon-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function *NATURE CELL BIOLOGY*
 Chang, P., Stearns, T.
 2000; 2 (1): 30-35

• Arrest, adaptation, and recovery following a chromosome double-strand break in Saccharomyces cerevisiae *Cold Spring Harbor Symposium on Quantitative Biology*
 COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT. 2000: 303–314

• gamma-Tubulin complexes: size does matter *TRENDS IN CELL BIOLOGY*
 Jeng, R., Stearns, T.
 1999; 9 (9): 339-342

• Components of an SCE ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle *GENES & DEVELOPMENT*
 Freed, E., Lacey, K. R., Huie, P., Lyapina, S. A., Deshaies, R. J., Stearns, T., Jackson, P. K.
 1999; 13 (17): 2242-2257

• Primer - The centrosome *CURRENT BIOLOGY*
 Urbani, L., Stearns, T.
 1999; 9 (9): R315-R317

• Cyclin-dependent kinase control of centrosome duplication *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 Lacey, K. R., Jackson, P. K., Stearns, T.
 1999; 96 (6): 2817-2822

• Alflp, a CLIP-170 domain-containing protein, is functionally and physically associated with alpha-tubulin *JOURNAL OF CELL BIOLOGY*
 Feierbach, B., Nogales, E., Downing, K. H., Stearns, T.
 1999; 144 (1): 113-124

• Cytoskeletal dynamics in yeast *METHODS IN CELL BIOLOGY, VOL 58*
 Carminati, J. L., Stearns, T.
 1999; 58: 87-105

• Centrosome reduction during mouse spermiogenesis *DEVELOPMENTAL BIOLOGY*
 Manandhar, G., Sutovsky, P., Joshi, H. C., Stearns, T., Schatten, G.
 1998; 203 (2): 424-434
• The mammalian gamma-tubulin complex contains homologues of the yeast spindle pole body components Spc97p and Spc98p. *Journal of Cell Biology*
Murphy, S. M., Urbani, L., Stearns, T.
1998; 141 (3): 663-674

• Parallel analysis of genetic selections using whole genome oligonucleotide arrays. *Proceedings of the National Academy of Sciences of the United States of America*
1998; 95 (7): 3752-3757

• Expression of amino- and carboxyl-terminal gamma- and alpha-tubulin mutants in cultured epithelial cells. *Journal of Biological Chemistry*
Leask, A., Stearns, T.
1998; 273 (5): 2661-2668

• Nucleation and capture of large cell surface-associated microtubule arrays that are not located near centrosomes in certain cochlear epithelial cells. *Journal of Anatomy*
1998; 192: 119-130

• Cytoskeleton: Anatomy of an organizing center. *Current Biology*
Marschall, L. G., Stearns, T.
1997; 7 (12): R754-R756

• The cell center at 100. *Cell*
Stearns, T., Winey, M.
1997; 91 (3): 303-309

• Motoring to the finish: Kinesin and dynein work together to orient the yeast mitotic spindle. *Journal of Cell Biology*
Stearns, T.
1997; 138 (5): 957-960

• Tubulin subunits exist in an activated conformational state generated and maintained by protein cofactors. *Journal of Cell Biology*
1997; 138 (4): 821-832

• Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. *Journal of Cell Biology*
Carminati, J. L., Stearns, T.
1997; 138 (3): 629-641

• Synaptically coupled central nervous system neurons lack centrosomal gamma-tubulin. *Neuroscience Letters*
Leask, A., Obrietan, K., Stearns, T.
1997; 229 (1): 17-20

• Centrosomes isolated from Spisula solidissima oocytes contain rings and an unusual stoichiometric ratio of alpha/beta tubulin. *Journal of Cell Biology*
Vogel, J. M., Stearns, T., Rieder, C. L., Palazzo, R. E.
1997; 137 (1): 193-202

• Centrosomal deployment of gamma-tubulin and pericentrin: Evidence for a microtubule-nucleating domain and a minus-end docking domain in certain mouse epithelial cells. *Cell Motility and the Cytoskeleton*
Mogensen, M. M., Mackie, J. B., Doxsey, S. J., Stearns, T., Tucker, J. B.
1997; 36 (3): 276-290

• Analysis of Tub4p, a yeast gamma-tubulin-like protein: Implications for microtubule-organizing center function. *Journal of Cell Biology*
Marschall, L. G., Jeng, R. L., Mulholland, J., Stearns, T.
1996; 134 (2): 443-454

• Cytoskeleton: Microtubule nucleation takes shape. *Current Biology*
Murphy, S. M., Stearns, T.
1996; 6 (6): 642-644
RECRUITMENT OF MATERNAL GAMMA-TUBULIN TO THE BOVINE SPERM CENTROSOME
Navara, C. S., Zoran, S. S., Salisbury, J. L., Simerly, C., Stearns, T., Schatten, G.
AMER SOC CELL BIOLOGY. 1995: 227–227

GREEN FLUORESCENT PROTEIN - THE GREEN-REVOLUTION CURRENT BIOLOGY
Stearns, T.
1995; 5 (3): 262-264

MUTATIONAL ANALYSIS OF SACCHAROMYCES-CEREVISIAE ARF1 JOURNAL OF BIOLOGICAL CHEMISTRY
Kahn, R. A., Clark, J., RULKA, C., Stearns, T., Zhang, C. J., Randazzo, P. A., Terui, T., Cavenagh, M.
1995; 270 (1): 143-150

THE FORM AND THE SUBSTANCE NATURE MEDICINE
Stearns, T.
1995; 1 (1): 19-20

IN-VITRO RECONSTITUTION OF CENTROSOME ASSEMBLY AND FUNCTION - THE CENTRAL ROLE OF GAMMA-TUBULIN CELL
Stearns, T., Kirschner, M.
1994; 76 (4): 623-637

SPECIFICITY DOMAINS DISTINGUISH THE RAS-RELATED GTPASES YPT1 AND SEC4 NATURE
Dunn, B., Stearns, T., Botstein, D.
1993; 362 (6420): 563-565

Spindle positioning and cell polarity. Current biology
Hyman, A. A., Stearns, T.
1992; 2 (9): 469-471

At the heart of the organizing center. Current biology
Cande, W. Z., Stearns, T.
1991; 1 (4): 254-256

GAMMA-TUBULIN IS A HIGHLY CONSERVED COMPONENT OF THE CENTROSOME CELL
Stearns, T., Evans, L., Kirschner, M.
1991; 65 (5): 825-836

ADP RIBOSYLATION FACTOR IS AN ESSENTIAL PROTEIN IN SACCHAROMYCES-CEREVISIAE AND IS ENCODED BY 2 GENES MOLECULAR AND CELLULAR BIOLOGY
Stearns, T., Kahn, R. A., Botstein, D., Hoyt, M. A.
1990; 10 (12): 6690-6699

ADP-RIBOSYLATION FACTOR IS FUNCTIONALLY AND PHYSICALLY ASSOCIATED WITH GOLGI-COMPLEX PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Stearns, T., Willingham, M. C., Botstein, D., Kahn, R. A.
1990; 87 (3): 1238-1242

The cytoskeleton of Saccharomyces cerevisiae CURRENT OPINION IN CELL BIOLOGY
BARNES, G., Drubin, D. G., Stearns, T.
1990; 2 (1): 109-115

YEAST MUTANTS SENSITIVE TO ANTIMICROTUBULE DRUGS DEFINE 3 GENES THAT AFFECT MICROTUBULE FUNCTION GENETICS
Stearns, T., Hoyt, M. A., Botstein, D.
1990; 124 (2): 251-262

The cytoskeleton of Saccharomyces cerevisiae. Current opinion in cell biology
BARNES, G., Drubin, D. G., Stearns, T.
1990; 2 (1): 109-115

CHROMOSOME INSTABILITY MUTANTS OF SACCHAROMYCES-CEREVISIAE THAT ARE DEFECTIVE IN MICROTUBULE-MEDIATED PROCESSES MOLECULAR AND CELLULAR BIOLOGY
Hoyt, M. A., Stearns, T., Botstein, D.
1990; 10 (1): 223-234

- **MANIPULATING YEAST GENOME USING PLASMID VECTORS** *METHODS IN ENZYMOLOGY*
 Stearns, T., Ma, H., Botstein, D.
 1990; 185: 280-297

- **THE YEAST MICROTUBULE CYTOSKELETON - GENETIC APPROACHES TO STRUCTURE AND FUNCTION** *CELL MOTILITY AND THE CYTOSKELETON*
 Stearns, T.

- **DNA TOPOISOMERASE-II MUST ACT AT MITOSIS TO PREVENT NONDISJUNCTION AND CHROMOSOME BREAKAGE** *MOLECULAR AND CELLULAR BIOLOGY*
 Holm, C., Stearns, T., Botstein, D.
 1989; 9 (1): 159-168

- **FLUORESCENCE MICROSCOPY METHODS FOR YEAST** *METHODS IN CELL BIOLOGY*
 1989; 31: 357-435

- **UNLINKED NONCOMPLEMENTATION - ISOLATION OF NEW CONDITIONAL-LETHAL MUTATIONS IN EACH OF THE TUBULIN GENES OF SACCHAROMYCES-CEREVISIAE** *GENETICS*
 Stearns, T., Botstein, D.
 1988; 119 (2): 249-260

- **DIVERSE BIOLOGICAL FUNCTIONS OF SMALL GTP-BINDING PROTEINS IN YEAST** *COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY*
 Botstein, D., Segev, N., Stearns, T., Hoyt, M. A., Holden, J., Kahn, R. A.
 1988; 53: 629-636