The central question behind our work is how the centrosome and primary cilium control cell function and influence development, and how defects in these structures cause a remarkable range of human disease, ranging from cancer, polycystic kidney disease, and obesity, to neurocognitive defects including mental retardation, schizophrenia, and dyslexia.

The centrosome consists of a pair of centrioles and pericentriolar material and organizes the cytoplasmic microtubules of most animal cells. Most importantly, the mother centriole (the older of the two in the pair) nucleates the formation of a primary cilium in most cells in the body. First seen by cell biologists in the 1950's, the primary cilium was ignored for many years until a combination of human and model organism genetics revealed that it is a critical sensory organelle with functions in many important processes. Defects in primary cilium structure and function cause a set of human conditions, called ciliopathies, that share a set of phenotypes that reflect the importance of the cilium in signaling pathways.
There are three main projects in the lab:

1) Ciliary biogenesis and function. In addition to the microtubules making up the interphase array and the mitotic spindle, many animal cells make a specialized microtubule structure, the primary cilium. This is a single, non-motile cilium that is able to act as a transducer of mechanical and chemical signals - sort of a cellular antenna. The microtubules of the ciliary axoneme grow directly from a centriole at their base, this centriole is often called a basal body. Some epithelial cells in the trachea, oviduct and brain produce hundreds of motile cilia on their surface, each with a centriole at their base. We are studying both the primary cilium and multiciliated cells for clues into ciliary structure and function, and centriole formation.

2) Cell cycle control of centrosome duplication. We have shown that duplication of the centrosome, the microtubule organizing center of animal cells, is dependent on the cell cycle kinase cdk2, and on cell cycle-specific proteolysis. We are working to determine the molecular mechanisms of centrosome duplication and to understand how centrosome duplication is controlled so that it happens once and only once per cell cycle. Cancer cells often have aberrant centrosome numbers, and we are investigating the relationship between aberrant centrosome number and the genome instability that is common in cancer cells.

3) Microtubule nucleation and organization. Microtubules are polymers of tubulin, which is a heterodimer of alpha-tubulin and beta-tubulin. We have identified a remarkable complex of proteins associated with a third type of tubulin, gamma-tubulin. Gamma-tubulin and its associated proteins are localized to the centrosome and are critical for initiation, or nucleation, of microtubule assembly. The gamma-tubulin complex (gammaTuRC) is a very large, ring-shaped complex and contains at least 6 proteins in addition to gamma-tubulin. We are determining the role of gamma-tubulin and its associated proteins in microtubule nucleation and organization.

Teaching

COURSES

2017-18
- I, Biologist: Diversity Improves the Science of Biology: BIO 52, CSRE 52H (Spr)
- Introduction to Laboratory Research in Cell and Molecular Biology: BIO 45 (Aut, Win)
- Science as a Creative Process: APPPHYS 61, BIO 61 (Aut)

2016-17
- I, Biologist: Diversity Improves the Science of Biology: BIO 52 (Spr)
- Introduction to Laboratory Research in Cell and Molecular Biology: BIO 45 (Aut, Win)

2015-16
- Core Molecular Biology Laboratory: BIO 44X (Aut, Win)
- Foundations in Experimental Biology: BIOS 200 (Aut)

2014-15
- Biology PhD Lab Rotation: BIO 299 (Spr, Sum)
- Core Molecular Biology Laboratory: BIO 44X (Aut, Win)

STANFORD ADVISEES

Doctoral Dissertation Reader (AC)
- Sean Beckwith, Devon Chandler-Brown, Megan Conlon, Mireille Kamariza, James Russell, Ariana Sanchez

Orals Chair
- Richard She
Postdoctoral Faculty Sponsor
Jonathan Geisinger, Roberta Sala, Krishnakumar Vasudevan, Jennifer Wang

Doctoral Dissertation Advisor (AC)
Claire Baumer, Garrison Buss, Kaitlin Ching, Olga Cormier, Miranda Stratton

Orals Evaluator
Miguel Garcia

Doctoral (Program)
Claire Baumer, Kaitlin Ching, Olga Cormier, Miranda Stratton

GRADUATE AND FELLOWSHIP PROGRAM AFFILIATIONS
• Biology (School of Humanities and Sciences) (Phd Program)
• Cancer Biology (Phd Program)
• Genetics (Phd Program)

Publications

PUBLICATIONS

• Using Yeast to Determine the Functional Consequences of Mutations in the Human p53 Tumor Suppressor Gene: An Introductory Course-Based Undergraduate Research Experience in Molecular and Cell Biology BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION

• Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells. eLife
 Wang, J. T., Kong, D., Hoerner, C. R., Loncarek, J., Stearns, T. 2017; 6

• Sperm Centrosomes: Kiss Your Asterless Goodbye, for Fertility's Sake. Current biology
 Schatten, G., Stearns, T. 2015; 25 (24): R1178-81

• MDM1 is a microtubule-binding protein that negatively regulates centriole duplication. Molecular biology of the cell

• Zeta-Tubulin Is a Member of a Conserved Tubulin Module and Is a Component of the Centriolar Basal Foot in Multiciliated Cells CURRENT BIOLOGY

• A High-Enrollment Course-Based Undergraduate Research Experience Improves Student Conceptions of Scientific Thinking and Ability to Interpret Data CBE-LIFE SCIENCES EDUCATION

• Observing planar cell polarity in multiciliated mouse airway epithelial cells. Methods in cell biology

• Probing mammalian centrosome structure using BioID proximity-dependent biotinylation CENTROSOME & CENTRIOLE
 Firat-Karalar, E. N., Stearns, T. 2015; 129: 153-170

• Cby1 promotes Ahi1 recruitment to a ring-shaped domain at the centriole-cilium interface and facilitates proper cilium formation and function MOLECULAR BIOLOGY OF THE CELL

- Proteomic analysis of mammalian sperm cells identifies new components of the centrosome JOURNAL OF CELL SCIENCE
 Firat-Karalar, E. N., Sante, J., Elliott, S., Stearns, T.
 2014; 127 (19): 4128-4133

- The centriole duplication cycle PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES
 Firat-Karalar, E. N., Stearns, T.
 2014; 369 (1650)

- Proximity Interactions among Centrosome Components Identify Regulators of Centriole Duplication CURRENT BIOLOGY
 Firat-Karalar, E. N., Raunyiar, N., Yates, J. R., Stearns, T.
 2014; 24 (6): 664-670

- Centrosome-kinase fusions promote oncogenic signaling and disrupt centrosome function in myeloproliferative neoplasms. PloS one
 Lee, J. Y., Hong, W., Majeti, R., Stearns, T.
 2014; 9 (3)

- Myb promotes centriole amplification and later steps of the multiciliogenesis program DEVELOPMENT
 2013; 140 (20): 4277-4286

- Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites NATURE
 2013; 502 (7470): 254-?

- Myb promotes centriole amplification and later steps of the multiciliogenesis program. Development
 2013; 140 (20): 4277-4286

- FOP Is a Centriolar Satellite Protein Involved in Ciliogenesis PLOS ONE
 Lee, J. Y., Stearns, T.
 2013; 8 (3)

- The Rilp-like proteins Rilpl1 and Rilpl2 regulate ciliary membrane content. Molecular biology of the cell
 Schaub, J. R., Stearns, T.
 2013; 24 (4): 453-464

- Transcriptional Program of Ciliated Epithelial Cells Reveals New Cilium and Centrosome Components and Links to Human Disease PLOS ONE
 2012; 7 (12)

- Supernumerary Centrosomes Nuclease Extra Cilia and Compromise Primary Cilium Signaling CURRENT BIOLOGY
 Mahjoub, M. R., Stearns, T.
 2012; 22 (17): 1628-1634

- The centriolar satellite proteins Cep72 and Cep290 interact and are required for recruitment of BBS proteins to the cilium MOLECULAR BIOLOGY OF THE CELL
 2012; 23 (17): 3322-3335

- STED Microscopy with Optimized Labeling Density Reveals 9-Fold Arrangement of a Centriole Protein BIOPHYSICAL JOURNAL
 2012; 102 (12): 2926-2935

- Mechanosensing by the Primary Cilium: Deletion of Kif3A Reduces Bone Formation Due to Loading PLOS ONE
 2012; 7 (3)
• A crucial requirement for Hedgehog signaling in small cell lung cancer NATURE MEDICINE
 2011; 17 (11): 1504-U1506

• Curcumin Inhibits Growth of Saccharomyces cerevisiae through Iron Chelation EUKARYOTIC CELL
 Minear, S., O'Donnell, A. F., Ballew, A., Giaever, G., Nislow, C., Stearns, T., Cyert, M. S.
 2011; 10 (11): 1574-1581

• The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries NATURE CELL BIOLOGY
 Nigg, E. A., Stearns, T.
 2011; 13 (10): 1154-1160

• STED Super-resolution Microscopy in Drosophila Tissue and in Mammalian Cells Conference on Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications III
 Lau, L., Lee, Y. L., Matis, M., Axelrod, J., Stearns, T., Moerner, W. E.
 SPIE-INT SOC OPTICAL ENGINEERING.2011

• Cep152 interacts with Plk4 and is required for centriole duplication JOURNAL OF CELL BIOLOGY
 Hatch, E. M., Kulukian, A., Holland, A. J., Cleveland, D. W., Stearns, T.
 2010; 191 (4): 721-729

• Cep120 is asymmetrically localized to the daughter centriole and is essential for centriole assembly JOURNAL OF CELL BIOLOGY
 Mahjoub, M. R., Xie, Z., Stearns, T.
 2010; 191 (2): 331-346

• The life cycle of centrioles. Cold Spring Harbor symposia on quantitative biology
 Hatch, E., Stearns, T.
 2010; 75: 425-431

• STEM CELLS A fateful age gap NATURE
 Stearns, T.
 2009; 461 (7266): 891-892

• Centriole Age Underlies Asynchronous Primary Cilium Growth in Mammalian Cells CURRENT BIOLOGY
 Anderson, C. T., Stearns, T.
 2009; 19 (17): 1498-1502

• Polo Kinase and Separase Regulate the Mitotic Licensing of Centriole Duplication in Human Cells DEVELOPMENTAL CELL
 Tsou, M. B., Wang, W., George, K. A., Uryu, K., Stearns, T., Jallepalli, P. V.
 2009; 17 (3): 344-354

• Plk1-Dependent Recruitment of gamma-Tubulin Complexes to Mitotic Centrosomes Involves Multiple PCM Components PLOS ONE
 Haren, L., Stearns, T., Luders, J.
 2009; 4 (6)

• Primary cilia: Cellular sensors for the skeleton 37th International Sun Valley Workshop on Skeletal Tissue Biology
 WILEY-BLACKWELL.2008: 1074–78

• Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
 2007; 104 (33): 13325-13330

• Molecular characterization of centriole assembly in ciliated epithelial cells JOURNAL OF CELL BIOLOGY
 Vladar, E. K., Stearns, T.
 2007; 178 (1): 31-42

• Opinion - Microtubule-organizing centres: a re-evaluation NATURE REVIEWS MOLECULAR CELL BIOLOGY
Primary cilia: Mechanosensory organelles in bone cells. 28th Annual Meeting of the American-Society-for-Bone-and-Mineral-Research
WILEY-BLACKWELL.2006: S39–S39

Mechanism limiting centrosome duplication to once per cell cycle NATURE
Tsou, M. B., Stearns, T.
2006; 442 (7105): 947-951

Controlling centrosome number: licenses and blocks CURRENT OPINION IN CELL BIOLOGY
Tsou, M. F., Stearns, T.
2006; 18 (1): 74-78

GCP-WD is a gamma-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation NATURE CELL BIOLOGY
Luders, J., Patel, U. K., Stearns, T.
2006; 8 (2): 137-U10

Insights into microtubule nucleation from the crystal structure of human gamma-tubulin NATURE
Aldaz, H., Rice, L. M., Stearns, T., Agard, D. A.
2005; 435 (7041): 523-527

Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure BMC CELL BIOLOGY
Wong, C., Stearns, T.
2005; 6

Centrosome number is controlled by a centrosome-intrinsic block to reduplication NATURE CELL BIOLOGY
Wong, C., Stearns, T.
2003; 5 (6): 539-544

Centrosome biology: A SAS-sy centriole in the cell cycle CURRENT BIOLOGY
Wong, C., Stearns, T.
2003; 13 (9): R351-R352

Controlling centrosome number: Evidence for a block to centrosome over-duplication EMBO/EMBL Conference on Centrosomes and Spindle Pole Bodies
Wong, C., Stearns, T.
WILEY-LISS.2003: 192–92

Centrosome structure and duplication EMBO/EMBL Conference on Centrosomes and Spindle Pole Bodies
Stearn, T., Chang, P., Patel, U., Wong, C.
WILEY-LISS.2003: 157–57

Epsilon-tubulin is required for centrosome duplication and structure EMBO/EMBL Conference on Centrosomes and Spindle Pole Bodies
Chang, P., Stearns, T.
WILEY-LISS.2003: 173–73

epsilon-tubulin is required for centriole duplication and microtubule organization NATURE CELL BIOLOGY
Chang, P., Giddings, T. H., Winey, M., Stearns, T.
2003; 5 (1): 71-76

Characterization of delta-tubulin in animal cells 42nd Annual Meeting of the American-Society-for-Cell-Biology
Ruster, K. S., Chang, P., Stearns, T.
AMER SOC CELL BIOLOGY.2002: 197A–198A

Controlling centrosome number: Evidence for a block to centrosome over-duplication 42nd Annual Meeting of the American-Society-for-Cell-Biology
Wong, C., Stearns, T.
AMER SOC CELL BIOLOGY.2002: 50A–50A

gamma-tubulin CURRENT BIOLOGY
Patel, U., Stearns, T.
Systematic structure-function analysis of the small GTPase Arf1 in yeast *MOLECULAR BIOLOGY OF THE CELL*
Click, E. S., Stearns, T., Botstein, D.
2002; 13 (5): 1652-1664

GCP5 and GCP6: Two new members of the human gamma-tubulin complex *MOLECULAR BIOLOGY OF THE CELL*
2001; 12 (11): 3340-3352

Centrosome duplication: A centriolar pas de deux *CELL*
Stearns, T.
2001; 105 (4): 417-420

Molecular mechanisms of centrosome duplication
Fiard-Ruster, K. S., Reynolds-Lacey, K., Chang, P., Stearns, T.
AMER SOC CELL BIOLOGY.2000: 342A–342A

Does the presence of multiple centrosomes lead to aneuploidy?
Wong, C. C., Stearns, T.
AMER SOC CELL BIOLOGY.2000: 203A–203A

Delta-tubulin and epsilon-tubulin: new tubulins at the centrosome
Chang, P., Stearns, T.
AMER SOC CELL BIOLOGY.2000: 552A–552A

The DNA damage checkpoint signal in budding yeast is nuclear limited *MOLECULAR CELL*
Demeter, J., Lee, S. E., Haber, J. E., Stearns, T.
2000; 6 (2): 487-492

delta-Tubulin and epsilon-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function *NATURE CELL BIOLOGY*
Chang, P., Stearns, T.
2000; 2 (1): 30-35

Arrest, adaptation, and recovery following a chromosome double-strand break in Saccharomyces cerevisiae *Cold Spring Harbor Symposium on Quantitative Biology*
COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT.2000: 303–314

gamma-Tubulin complexes: size does matter *TRENDS IN CELL BIOLOGY*
Jeng, R., Stearns, T.
1999; 9 (9): 339-342

Components of an SCE ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle *GENES & DEVELOPMENT*
Freed, E., Lacey, K. R., Huie, P., Lyapina, S. A., Deshaies, R. J., Stearns, T., Jackson, P. K.
1999; 13 (17): 2242-2257

Primer - The centrosome *CURRENT BIOLOGY*
Urbani, L., Stearns, T.
1999; 9 (9): R315-R317

Cyclin-dependent kinase control of centrosome duplication *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
Lacey, K. R., Jackson, P. K., Stearns, T.
1999; 96 (6): 2817-2822

Alf1p, a CLIP-170 domain-containing protein, is functionally and physically associated with alpha-tubulin *JOURNAL OF CELL BIOLOGY*
Feierbach, B., Nogales, E., Downing, K. H., Stearns, T.
1999; 144 (1): 113-124
• Cytoskeletal dynamics in yeast *METHODS IN CELL BIOLOGY, VOL 58*
 Carminati, J. L., Stearns, T.
 1999; 58: 87-105

• Centrosome reduction during mouse spermiogenesis *DEVELOPMENTAL BIOLOGY*
 Manandhar, G., Sutovsky, P., Joshi, H. C., Stearns, T., Schatten, G.
 1998; 203 (2): 424-434

• The mammalian gamma-tubulin complex contains homologues of the yeast spindle pole body components Spc97p and Spc98p *JOURNAL OF CELL BIOLOGY*
 Murphy, S. M., Urbani, L., Stearns, T.
 1998; 141 (3): 663-674

• Parallel analysis of genetic selections using whole genome oligonucleotide arrays *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 1998; 95 (7): 3752-3757

• Expression of amino- and carboxyl-terminal gamma- and alpha-tubulin mutants in cultured epithelial cells *JOURNAL OF BIOLOGICAL CHEMISTRY*
 Leask, A., Stearns, T.
 1998; 273 (5): 2661-2668

• Nucleation and capture of large cell surface-associated microtubule arrays that are not located near centrosomes in certain cochlear epithelial cells *JOURNAL OF ANATOMY*
 1998; 192: 119-130

• Cytoskeleton: Anatomy of an organizing center *CURRENT BIOLOGY*
 Marschall, L. G., Stearns, T.
 1997; 7 (12): R754-R756

• The cell center at 100 *CELL*
 Stearns, T., Winey, M.
 1997; 91 (3): 303-309

• Motoring to the finish: Kinesin and dynein work together to orient the yeast mitotic spindle *JOURNAL OF CELL BIOLOGY*
 Stearns, T.
 1997; 138 (5): 957-960

• Tubulin subunits exist in an activated conformational state generated and maintained by protein cofactors *JOURNAL OF CELL BIOLOGY*
 1997; 138 (4): 821-832

• Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex *JOURNAL OF CELL BIOLOGY*
 Carminati, J. L., Stearns, T.
 1997; 138 (3): 629-641

• Synaptically coupled central nervous system neurons lack centrosomal gamma-tubulin *NEUROSCIENCE LETTERS*
 Leask, A., Obrietan, K., Stearns, T.
 1997; 229 (1): 17-20

• Centrosomes isolated from Spisula solidissima oocytes contain rings and an unusual stoichiometric ratio of alpha/beta tubulin *JOURNAL OF CELL BIOLOGY*
 Vogel, J. M., Stearns, T., Rieder, C. L., Palazzo, R. E.
 1997; 137 (1): 193-202

• Centrosomal deployment of gamma-tubulin and pericentrin: Evidence for a microtubule-nucleating domain and a minus-end docking domain in certain mouse epithelial cells *CELL MOTILITY AND THE CYTOSKELETON*
 Mogensen, M. M., Mackie, J. B., Doxsey, S. J., Stearns, T., Tucker, J. B.
 1997; 36 (3): 276-290

• Cytoskeleton: Microtubule nucleation takes shape. *Current Biology* 1996; 6 (6): 642-644

• Mutational analysis of *Saccharomyces cerevisiae* ARF1. *Journal of Biological Chemistry* 1995; 270 (1): 143-150

• In-vitro reconstitution of centrosome assembly and function - the central role of gamma-tubulin. *Cell* 1994; 76 (4): 623-637

• Spindle positioning and cell polarity. *Current Biology* 1992; 2 (9): 469-471

• At the heart of the organizing center. *Current Biology* 1991; 1 (4): 254-256

• Gamma-tubulin is a highly conserved component of the centrosome. *Cell* 1991; 65 (5): 825-836

• ADP ribosylation factor is an essential protein in *Saccharomyces cerevisiae* and is encoded by 2 genes. *Molecular and Cellular Biology* 1990; 10 (12): 6690-6699

• ADP-ribosylation factor is functionally and physically associated with Golgi-complex. *Proceedings of the National Academy of Sciences of the United States of America* 1990; 87 (3): 1238-1242

• The cytoskeleton of *Saccharomyces cerevisiae*. *Current Opinion in Cell Biology* 1990; 2 (1): 109-115

• Yeast mutants sensitive to antimicrotubule drugs define 3 genes that affect microtubule function. *Genetics* 1990; 10 (12): 6690-6699
The cytoskeleton of *Saccharomyces cerevisiae*. *Current opinion in cell biology*
BARNES, G., Drubin, D. G., Stearns, T.
1990; 2 (1): 109-115

CHROMOSOME INSTABILITY MUTANTS OF *SACCHAROMYCES-CEREVISIAE THAT ARE DEFECTIVE IN MICROTUBULE-MEDIATED PROCESSES* *MOLECULAR AND CELLULAR BIOLOGY*
Hoyt, M. A., Stearns, T., Botstein, D.
1990; 10 (1): 223-234

MANIPULATING YEAST GENOME USING PLASMID VECTORS *METHODS IN ENZYMOLOGY*
Stearns, T., Ma, H., Botstein, D.
1990; 185: 280-297

THE YEAST MICROTUBULE CYTOSKELETON - GENETIC APPROACHES TO STRUCTURE AND FUNCTION *CELL MOTILITY AND THE CYTOSKELETON*
Stearns, T.

DNA TOPOISOMERASE-II MUST ACT AT MITOSIS TO PREVENT NONDISJUNCTION AND CHROMOSOME BREAKAGE *MOLECULAR AND CELLULAR BIOLOGY*
Holm, C., Stearns, T., Botstein, D.
1989; 9 (1): 159-168

FLUORESCENCE MICROSCOPY METHODS FOR YEAST *METHODS IN CELL BIOLOGY*
1989; 31: 357-435

UNLINKED NONCOMPLEMENTATION - ISOLATION OF NEW CONDITIONAL-LETHAL MUTATIONS IN EACH OF THE TUBULIN GENES OF *SACCHAROMYCES-CEREVISIAE* *GENETICS*
Stearns, T., Botstein, D.
1988; 119 (2): 249-260

DIVERSE BIOLOGICAL FUNCTIONS OF SMALL GTP-BINDING PROTEINS IN YEAST *COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY*
Botstein, D., Segev, N., Stearns, T., Hoyt, M. A., Holden, J., Kahn, R. A.
1988; 53: 629-636