Dr. Jason Yeatman is an Assistant Professor in the Graduate School of Education and Division of Developmental and Behavioral Pediatrics at Stanford University. Dr. Yeatman completed his PhD in Psychology at Stanford where he studied the neurobiology of literacy and developed new brain imaging methods for studying the relationship between brain plasticity and learning. After finishing his PhD, he took a faculty position at the University of Washington’s Institute for Learning and Brain Sciences before returning to Stanford.

As the director of the Brain Development and Education Lab, the overarching goal of his research is to understand the mechanisms that underlie the process of learning to read, how these mechanisms differ in children with dyslexia, and to design literacy intervention programs that are effective across the wide spectrum of learning differences. His lab employs a collection of structural and functional neuroimaging measurements to study how a child’s experience with reading instruction shapes the development of brain circuits that are specialized for this unique cognitive function.

ACADEMIC APPOINTMENTS
- Assistant Professor, Pediatrics
- Assistant Professor, Graduate School of Education
- Member, Maternal & Child Health Research Institute (MCHRI)

LINKS
- Brain Development & Education Lab: https://www.brainandeducation.com/

Research & Scholarship

RESEARCH INTERESTS
- Brain and Learning Sciences
- Child Development
- Data Sciences
- Early Childhood
- Literacy and Language
• Psychology
• Research Methods
• Special Education
• Technology and Education

Teaching

COURSES

2020-21
• Literacy Development and Instruction: EDUC 258 (Aut)

2019-20
• Educational Neuroscience: EDUC 266 (Win)

STANFORD ADVISEES

Postdoctoral Faculty Sponsor
Manjari Narayan, Mahalakshmi Ramamurthy, Maya Yablonski

Doctoral (Program)
Jamie Mitchell

Publications

PUBLICATIONS

• Bridging sensory and language theories of dyslexia: towards a multifactorial model. Developmental science
 O’Brien, G., Yeatman, J.
 2020: e13039

• Controlling for Participants’ Viewing Distance in Large-Scale, Psychophysical Online Experiments Using a Virtual Chinrest. Scientific reports
 Li, Q., Joo, S. J., Yeatman, J. D., Reinecke, K.
 2020; 10 (1): 904

• Evaluating arcuate fasciculus laterality measurements across dataset and tractography pipelines HUMAN BRAIN MAPPING
 Bain, J. S., Yeatman, J. D., Schurr, R., Rokem, A., Mezer, A. A.
 2019; 40 (13): 3695–3711

• The link between reading ability and visual spatial attention across development. Cortex; a journal devoted to the study of the nervous system and behavior
 White, A. L., Boynton, G. M., Yeatman, J. D.
 2019; 121: 44–59

• Intensive Summer Intervention Drives Linear Growth of Reading Skill in Struggling Readers FRONTIERS IN PSYCHOLOGY
 Donnelly, P. M., Huber, E., Yeatman, J. D.
 2019; 10

• You Can’t Recognize Two Words Simultaneously. Trends in cognitive sciences
 White, A. L., Boynton, G. M., Yeatman, J. D.
 2019

• Categorical phoneme labeling in children with dyslexia does not depend on stimulus duration JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
 O’Brien, G. E., McCloy, D. R., Yeatman, J. D.

• Parallel spatial channels converge at a bottleneck in anterior word-selective cortex PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
• Combining Citizen Science and Deep Learning to Amplify Expertise in Neuroimaging. *Frontiers in Neuroinformatics*
 Keshavan, A., Yeatman, J. D., Rokem, A.
 2019; 13: 29

• Applying microstructural models to understand the role of white matter in cognitive development
 Huber, E., Henriques, R., Owen, J. P., Rokem, A., Yeatman, J. D.
 ELSEVIER SCI LTD. 2019: 100624

• Word selectivity in high-level visual cortex and reading skill
 Kubota, E. C., Joo, S., Huber, E., Yeatman, J. D.
 ELSEVIER SCI LTD. 2019: 100593

• Intensive Summer Intervention Drives Linear Growth of Reading Skill in Struggling Readers. *Frontiers in psychology*
 Donnelly, P. M., Huber, E., Yeatman, J. D.
 2019; 10: 1900

• Reading ability and phoneme categorization. *Scientific Reports*
 O'Brien, G. E., McCloy, D. R., Kubota, E. C., Yeatman, J. D.
 2018; 8: 16842

• Evaluating g-ratio weighted changes in the corpus callosum as a function of age and sex
 Berman, S., West, K. L., Does, M. D., Yeatman, J. D., Mezer, A. A.
 ACADEMIC PRESS INC ELSEVIER SCIENCE. 2018: 304–13

• Tractography optimization using quantitative T1 mapping in the human optic radiation. *Neuroimage*
 Schurr, R., Duan, Y., Norcia, A. M., Ogawa, S., Yeatman, J. D., Mezer, A. A.
 2018; 181: 645–58

• Rapid and widespread white matter plasticity during an intensive reading intervention. *Nature Communications*
 Huber, E., Donnelly, P. M., Rokem, A., Yeatman, J. D.
 2018; 9: 2260

• Optimizing text for an individual’s visual system: The contribution of visual crowding to reading difficulties. *Cortex*
 Joo, S., White, A. L., Strodtman, D. J., Yeatman, J. D.
 2018; 103: 291–301

• A browser-based tool for visualization and analysis of diffusion MRI data. *Nature Communications*
 Yeatman, J. D., Richie-Halford, A., Smith, J. K., Keshavan, A., Rokem, A.
 2018; 9: 940

• The challenge of mapping the human connectome based on diffusion tractography. *Nature Communications*
 2017; 8: 1349

• The causal relationship between dyslexia and motion perception reconsidered. *Scientific Reports*
 Joo, S., Donnelly, P. M., Yeatman, J. D.
 2017; 7: 4185

• Bottom-up and top-down computations in word-and face-selective cortex. *Elife*
 Kay, K. N., Yeatman, J. D.
 2017; 6

• The corticospinal tract profile in amyotrophic lateral sclerosis. *Human Brain Mapping*
 Sarica, A., Cerasa, A., Valentino, P., Yeatman, J., Trotta, M., Barone, S., Granata, A., Nisticò, R., Perrotta, P., Pucci, F., Quattrone, A.
 2017; 38 (2): 727–39

• A fully computable model of stimulus-driven and top-down effects in high-level visual cortex
 Kay, K., Yeatman, J.
Aging-Resilient Associations between the Arcuate Fasciculus and Vocabulary Knowledge: Microstructure or Morphology? *JOURNAL OF NEUROSCIENCE*
Teubner-Rhodes, S., Vaden, K. I., Cute, S. L., Yeatman, J. D., Dougherty, R. F., Eckert, M. A.
2016; 36 (27): 7210-7222

A Major Human White Matter Pathway Between Dorsal and Ventral Visual Cortex. *Cerebral cortex*
Takemura, H., Rokem, A., Winawer, J., Yeatman, J. D., Wandell, B. A., Pestilli, F.
2016; 26 (5): 2205-2214

ABNORMAL WHITE MATTER PROPERTIES IN ADOLESCENT GIRLS WITH ANOREXIA NERVOSA
ELSEVIER SCIENCE INC.2016; S24–S25

The posterior arcuate fasciculus and the vertical occipital fasciculus. *Cortex; a journal devoted to the study of the nervous system and behavior*
Weiner, K. S., Yeatman, J. D., Wandell, B. A.
2016

Temporal Tuning of Word- and Face-selective Cortex. *Journal of cognitive neuroscience*
Yeatman, J. D., Norcia, A. M.
2016; 28 (11): 1820-27

The Structural Properties of Major White Matter Tracts in Strabismic Amblyopia. *Investigative ophthalmology & visual science*
Duan, Y., Norcia, A. M., Yeatman, J. D., Mezer, A.
2015; 56 (9): 5152-5160

Evaluating the Accuracy of Diffusion MRI Models in White Matter *PLOS ONE*
Rokem, A., Yeatman, J. D., Pestilli, F., Kay, K. N., Mezer, A., van der Walt, S., Wandell, B. A.
2015; 10 (4)

Abnormal white matter properties in adolescent girls with anorexia nervosa. *Neuroimage. Clinical*
2015; 9: 648-659

Abnormal white matter properties in adolescent girls with anorexia nervosa *NEUROIMAGE-CLINICAL*
2015; 9: 648-659

The vertical occipital fasciculus: A century of controversy resolved by in vivo measurements *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
2014; 111 (48): E5214-E5223

Speed discrimination predicts word but not pseudo-word reading rate in adults and children *BRAIN AND LANGUAGE*
Main, K. L., Pestilli, F., Mezer, A., Yeatman, J., Martin, R., Phipps, S., Wandell, B.
2014; 138: 27-37

Evaluation and statistical inference for human connectomes *NATURE METHODS*
Pestilli, F., Yeatman, J. D., Rokem, A., Kay, K. N., Wandell, B. A.
2014; 11 (10): 1058-1063

White Matter Consequences of Retinal Receptor and Ganglion Cell Damage *INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE*
2014; 55 (10)

Lifespan maturation and degeneration of human brain white matter *NATURE COMMUNICATIONS*
Yeatman, J. D., Wandell, B. A., Mezer, A. A.
2014; 5

Disease in the photoreceptors (JMD) or retinal ganglion cells (LHON) affects optic tract and radiation tissue properties
Diffusion properties of major white matter tracts in young, typically developing children. *Neuroimage*
2014; 88: 143-154

Lifespan maturation and degeneration of human brain white matter. *Nature communications*
Yeatman, J. D., Wandell, B. A., Mezer, A. A.
2014; 5: 4932-?

Developmental Changes within White Matter Tracts of Healthy Children Age 9 to 16 Years Old
Yeatman, J. D., Myall, N. J., Dougherty, R. F., Wandell, B. A., Feldman, H. M.
Lippincott Williams & Wilkins 2013: S5

Anatomy of the visual word form area: Adjacent cortical circuits and long-range white matter connections. *Brain and language*
Yeatman, J. D., Rauschecker, A. M., Wandell, B. A.
2013; 125 (2): 146-155

Biological development of reading circuits. *Current opinion in neurobiology*
Wandell, B. A., Yeatman, J. D.
2013; 23 (2): 261-268

Effects of early language, speech, and cognition on later reading: a mediation analysis. *Frontiers in psychology*
Durand, V. N., Loe, I. M., Yeatman, J. D., Feldman, H. M.
2013; 4: 586-?

Neural plasticity after pre-linguistic injury to the arcuate and superior longitudinal fasciculi. *Cortex*
Yeatman, J. D., Feldman, H. M.
2013; 49 (1): 301-311

Language and reading skills in school-aged children and adolescents born preterm are associated with white matter properties on diffusion tensor imaging. *Neuropsychologia*
Feldman, H. M., Lee, E. S., Yeatman, J. D., Yeom, K. W.
2012; 50 (14): 3348-3362

Development of white matter and reading skills. *Proceedings of the National Academy of Sciences of the United States of America*
Yeatman, J. D., Dougherty, R. F., Ben-Shachar, M., Wandell, B. A.
2012; 109 (44): E3045-E3053

Differences in neural activation between preterm and full term born adolescents on a sentence comprehension task: Implications for educational accommodations. *Developmental Cognitive Neuroscience*
Barde, L. H., Yeatman, J. D., Lee, E. S., Glover, G., Feldman, H. M.
2012; 2: S114-S128

Learning to See Words. *Annual Review of Psychology, Vol 63*
Wandell, B. A., Rauschecker, A. M., Yeatman, J. D.
2012; 63: 31-53

Anatomical Properties of the Arcuate Fasciculus Predict Phonological and Reading Skills in Children. *Journal of Cognitive Neuroscience*
Yeatman, J. D., Dougherty, R. F., Rykhlevskaia, E., Sherbondy, A. J., Deutsch, G. K., Wandell, B. A., Ben-Shachar, M.
2011; 23 (11): 3304-3317

Specific language and reading skills in school-aged children and adolescents are associated with prematurity after controlling for IQ. *Neuropsychologia*
Lee, E. S., Yeatman, J. D., Luna, B., Feldman, H. M.
2011; 49 (5): 906-913

Individual differences in auditory sentence comprehension in children: An exploratory event-related functional magnetic resonance imaging investigation. *Brain and Language*
Yeatman, J. D., Ben-Shachar, M., Glover, G. H., Feldman, H. M.
• Reading performance correlates with white-matter properties in preterm and term children *DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY*
 Andrews, J. S., Ben-Shachar, M., Yeatman, J. D., Flom, L. L., Luna, B., Feldman, H. M.
 2010; 52 (6): E94-E100

• Diffusion Tensor Imaging: A Review for Pediatric Researchers and Clinicians *JOURNAL OF DEVELOPMENTAL AND BEHAVIORAL PEDIATRICS*
 Feldman, H. M., Yeatman, J. D., Lee, E. S., Barde, L. H., Gaman-Bean, S.
 2010; 31 (4): 346-356

• Using Diffusion Tensor Imaging and Fiber Tracking to Characterize Diffuse Perinatal White Matter Injury: A Case Report *JOURNAL OF CHILD NEUROLOGY*
 Yeatman, J. D., Ben-Shachar, M., Bammer, R., Feldman, H. M.
 2009; 24 (7): 795-800