Immunotherapy has the potential to become the new paradigm of cancer treatment. While anatomic imaging has been the gold standard to monitor treatment efficacy based upon decreases in tumor size, patients treated with immunotherapies often present with a period of apparent tumor growth before prolonged regression. Due to the high cost and delayed response time, there exists a compelling need to accurately predict which patients are most likely to benefit from immune based treatment strategies. Aaron hopes to develop a molecular imaging toolkit including novel software, hardware, and biological wetware to improve monitoring of cancer immunotherapies in the clinic. He is advised on this project by Dr. Sam Gambhir. Aaron brings with him experience in multi-modality molecular imaging of cancer from his time spent under the mentorship of Dr. Efstathios Karathanasis and Dr. Mark Griswold at the Case Center for Imaging Research in Cleveland, Ohio. After graduating from CWRU, Aaron spent a year in Switzerland as a Fulbright Fellow at the Ecole Polytechnique Federale de Lausanne (EPFL) where, with the guidance of Dr. Melody Swartz and Dr. Jeffrey Hubbell, he utilized imaging tools to better understand the mechanisms of therapeutic cancer vaccines.
Publications

PUBLICATIONS

- Tracking T Cell Activation By OX40 Immuno-PET: A Novel Strategy for Imaging of Graft Versus Host Disease
 AMER SOC HEMATOLOGY. 2018

- Eradication of spontaneous malignancy by local immunotherapy. SCIENCE TRANSLATIONAL MEDICINE
 2018; 10 (426)

- Imaging activated T cells predicts response to cancer vaccines. The Journal of clinical investigation
 2018

- Vaccine nanocarriers: Coupling intracellular pathways and cellular biodistribution to control CD4 vs CD8 T cell responses BIOMATERIALS
 2017; 132: 48-58

- Practical Immuno-PET Radiotracer Design Considerations for Human Immune Checkpoint Imaging JOURNAL OF NUCLEAR MEDICINE
 2017; 58 (4): 538-546

- Development of Novel ImmunoPET Tracers to Image Human PD-1 Checkpoint Expression on Tumor-Infiltrating Lymphocytes in a Humanized Mouse Model. Molecular imaging and biology
 Natarajan, A., Mayer, A. T., Reeves, R. E., Nagamine, C. M., Gambhir, S. S.
 2017

- Local estrogen axis in the human bone microenvironment regulates estrogen receptor-positive breast cancer cells. Breast cancer research: BCR
 2017; 19 (1): 121

- Imaging B cells in a mouse model of multiple sclerosis using (64)Cu-Rituximab-PET. Journal of nuclear medicine: official publication, Society of Nuclear Medicine
 2017

- Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proceedings of the National Academies of Sciences of the United States of America
 2015; 112 (47): E6506-14

- Novel Radiotracer for ImmunoPET Imaging of PD-1 Checkpoint Expression on Tumor Infiltrating Lymphocytes. Bioconjugate chemistry
 Natarajan, A., Mayer, A. T., Xu, L., Reeves, R. E., Gano, J., Gambhir, S. S.
 2015; 26 (10): 2062-2069

- On-Command Drug Release from Nanochains Inhibits Growth of Breast Tumors PHARMACEUTICAL RESEARCH
 2014; 31 (6): 1460-1468

- Treatment of cancer micrometastasis using a multicomponent chain-like nanoparticle JOURNAL OF CONTROLLED RELEASE
 2014; 173: 51-58

- Imaging Metastasis Using an Integrin-Targeting Chain-Shaped Nanoparticle ACS NANO
 2012; 6 (10): 8783-8795
Enhanced Delivery of Chemotherapy to Tumors Using a Multicomponent Nanochain with Radio-Frequency-Tunable Drug Release *ACS NANO*

2012; 6 (5): 4157-4168