Felix Zajac
Professor (Research) of Mechanical Engineering and of Orthopaedic Surgery, Emeritus

Bio

ACADEMIC APPOINTMENTS
• Emeritus Faculty, Acad Council, Mechanical Engineering

Publications

PUBLICATIONS
• All joint moments significantly contribute to trunk angular acceleration JOURNAL OF BIOMECHANICS
 Nott, C. R., Zajac, F. E., Neptune, R. R., Kautz, S. A.
 2010; 43 (13): 2648-2652

• Merging of Healthy Motor Modules Predicts Reduced Locomotor Performance and Muscle Coordination Complexity Post-Stroke JOURNAL OF NEUROPHYSIOLOGY
 Clark, D. J., Ting, L. H., Zajac, F. E., Neptune, R. R., Kautz, S. A.
 2010; 103 (2): 844-857

• Author's Response to Comment on "Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking" (Neptune et al., 2001) and "Muscle mechanical work requirements during normal walking: The energetic cost of raising the body's center-of-mass is significant" JOURNAL OF BIOMECHANICS
 Neptune, R. R., Zajac, F. E., Kautz, S. A.
 2009; 42 (11): 1786-1789

• Effect of equinus foot placement and intrinsic muscle response on knee extension during stance GAIT & POSTURE
 2006; 23 (1): 32-36

• Muscle contributions to support during gait in an individual with post-stroke hemiparesis JOURNAL OF BIOMECHANICS
 Higginson, J. S., Zajac, F. E., Neptune, R. R., Kautz, S. A., Delp, S. L.
 2006; 39 (10): 1769-1777

• Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds GAIT & POSTURE
 Chen, G., Patten, C., Kothari, D. H., Zajac, F. E.
 2005; 22 (1): 51-56

• Gait deviations associated with post-stroke hemiparesis: improvement during treadmill walking using weight support, speed, support stiffness, and handrail hold GAIT & POSTURE
 Chen, G., Patten, C., Kothari, D. H., Zajac, F. E.
 2005; 22 (1): 57-62

• Muscle mechanical work requirements during normal walking: the energetic cost of raising the body's center-of-mass is significant JOURNAL OF BIOMECHANICS
 Neptune, R. R., Zajac, F. E., Kautz, S. A.
 2004; 37 (6): 817-825

• Muscle force redistributes segmental power for body progression during walking GAIT & POSTURE
 Neptune, R. R., Zajac, F. E., Kautz, S. A.
 2004; 19 (2): 194-205
• Biomechanics and muscle coordination of human walking Part II: Lessons from dynamical simulations and clinical implications
 Zajac, F. E., Neptune, R. R., Kautz, S. A.
 2003; 17 (1): 1-17

• Biomechanics and muscle coordination of human walking - Part I: Introduction to concepts, power transfer, dynamics and simulations
 Zajac, F. E., Neptune, R. R., Kautz, S. A.

• Mutability of bifunctional thigh muscle activity in pedaling due to contralateral leg force generation
 2002; 88 (3): 1308-1317

• Understanding muscle coordination of the human leg with dynamical simulations
 Zajac, F. E.
 2002; 35 (8): 1011-1018

• Nonuniform shortening in the biceps brachii during elbow flexion
 2002; 92 (6): 2381-2389

• Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking
 Neptune, R. R., Kautz, S. A., Zajac, F. E.
 2001; 34 (11): 1387-1398

• Bicycle drive system dynamics: Theory and experimental validation
 Fregly, B. J., Zajac, F. E., Dairaghi, C. A.
 2000; 122 (4): 446-452

• Contralateral movement and extensor force generation after flexion phase muscle coordination in pedaling
 Ting, L. H., Kautz, S. A., Brown, D. A., Zajac, F. E.
 2000; 83 (6): 3351-3365

• Muscle contributions to specific biomechanical functions do not change in forward versus backward pedaling
 Neptune, R. R., Kautz, S. A., Zajac, F. E.
 2000; 33 (2): 155-164

• In vivo tracking of the human patella using cine phase contrast magnetic resonance imaging
 Sheehan, F. T., Zajac, F. E., Drace, J. E.
 1999; 121 (6): 650-656

• Ankle and hip postural strategies defined by joint torques
 Runge, C. F., Shupert, C. L., Horak, F. B., Zajac, F. E.
 1999; 10 (2): 161-170

• Locomotor strategy for pedaling: Muscle groups and biomechanical functions
 Raasch, C. C., Zajac, F. E.
 1999; 82 (2): 515-525

• Phase reversal of biomechanical functions and muscle activity in backward pedaling
 Ting, L. H., Kautz, S. A., Brown, D. A., Zajac, F. E.
 1999; 81 (2): 544-551

• Role of vestibular information in initiation of rapid postural responses
 Runge, C. F., Shupert, C. L., Horak, F. B., Zajac, F. E.
 1998; 122 (4): 403-412

• Sensorimotor state of the contralateral leg affects ipsilateral muscle coordination of pedaling
 Ting, L. H., Raasch, C. C., Brown, D. A., Kautz, S. A., Zajac, F. E.
 1998; 80 (3): 1341-1351
• Large index-fingertip forces are produced by subject-independent patterns of muscle excitation
 Valero-Cuevas, F. J., Zajac, F. E., Burgar, C. G.
 1998; 31 (8): 693-703

• Bilateral integration of sensorimotor signals during pedaling
 Conference on Neuronal Mechanisms for Generating Locomotor Activity
 NEW YORK ACAD SCIENCES. 1998: 513–516

• Using cine phase contrast magnetic resonance imaging to non-invasively study in vivo knee dynamics
 JOURNAL OF BIOMECHANICS
 Sheehan, F. T., Zajac, F. E., Drace, J. E.
 1998; 31 (1): 21-26

• Muscle coordination of maximum-speed pedaling
 JOURNAL OF BIOMECHANICS
 Raasch, C. C., Zajac, F. E., Ma, B. M., Levine, W. S.
 1997; 30 (6): 595-602

• Crank inertial load has little effect on steady-state pedaling coordination
 JOURNAL OF BIOMECHANICS
 Fregly, B. J., Zajac, F. E., Dairaghi, C. A.
 1996; 29 (12): 1559-1567

• A state-space analysis of mechanical energy generation, absorption, and transfer during pedaling
 JOURNAL OF BIOMECHANICS
 Fregly, B. J., Zajac, F. E.
 1996; 29 (1): 81-90

• ESTIMATING NET JOINT TORQUES FROM KINESIOLOGICAL DATA USING OPTIMAL LINEAR-SYSTEM THEORY
 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
 1995; 42 (12): 1158-1164

• MODELING AND SIMULATION OF PARAPLEGIC AMBULATION IN A RECIPROCATING GAIT ORTHOSIS
 JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME
 Tashman, S., Zajac, F. E., Perkash, I.
 1995; 117 (3): 300-308

• COMPENSATING FOR CHANGES IN MUSCLE LENGTH IN TOTAL HIP-ARTHROPLASTY - EFFECTS ON THE MOMENT GENERATING CAPACITY OF THE MUSCLES
 CLINICAL ORTHOPAEDICS AND RELATED RESEARCH
 Vasavada, A. N., Delp, S. L., Maloney, W. J., Schurman, D. J., Zajac, F. E.
 1994: 121-133

• HUMAN STANDING POSTURE - MULTIJOINT MOVEMENT STRATEGIES BASED ON BIOMECHANICAL CONSTRAINTS
 SYMP ON NATURAL AND ARTIFICIAL CONTROL OF HEARING AND BALANCE, IN HONOR OF PROFESSOR CARL RUDOLF PFALTZ
 Kuo, A. D., Zajac, F. E.
 ELSEVIER SCIENCE PUBL B V. 1993: 349–358

• HUMAN STANDING POSTURE - MULTIJOINT MOVEMENT STRATEGIES BASED ON BIOMECHANICAL CONSTRAINTS
 PROGRESS IN BRAIN RESEARCH
 Kuo, A. D., Zajac, F. E.
 1993; 97: 349-358

• A BIOMECHANICAL ANALYSIS OF MUSCLE STRENGTH AS A LIMITING FACTOR IN STANDING POSTURE
 13TH CONGRESS OF THE INTERNATIONAL SOC OF BIOMECHANICS
 Kuo, A. D., Zajac, F. E.
 PERGAMON-ELSEVIER SCIENCE LTD. 1993: 137–150

• MUSCLE COORDINATION OF MOVEMENT - A PERSPECTIVE
 13TH CONGRESS OF THE INTERNATIONAL SOC OF BIOMECHANICS
 Zajac, F. E.
 PERGAMON-ELSEVIER SCIENCE LTD. 1993: 109–124

• WHAT IS THE NATURE OF THE FEEDFORWARD COMPONENT IN MOTOR CONTROL
 BEHAVIORAL AND BRAIN SCIENCES
 Kuo, A. D., Zajac, F. E.
• FORCE-GENERATING AND MOMENT-GENERATING CAPACITY OF LOWER-EXTREMITY MUSCLES BEFORE AND AFTER TENDON LENGTHENING CLINICAL ORTHOPAEDICS AND RELATED RESEARCH
Delp, S. L., Zajac, F. E.
1992: 247-259

• How musculotendon architecture and joint geometry affect the capacity of muscles to move and exert force on objects: a review with application to arm and forearm tendon transfer design. journal of hand surgery
Zajac, F. E.
1992; 17 (5): 799-804

• HOW MUSCULOTENDON ARCHITECTURE AND JOINT GEOMETRY AFFECT THE CAPACITY OF MUSCLES TO MOVE AND EXERT FORCE ON OBJECTS - A REVIEW WITH APPLICATION TO ARM AND FOREARM TENDON TRANSFER DESIGN JOURNAL OF HAND SURGERY-AMERICAN VOLUME
Zajac, F. E.
1992; 17A (5): 799-804

• AN ANALYSIS OF BIOMECHANICAL CONSTRAINTS ON THE COORDINATION OF STANDING POSTURE 11th International Symposium of the Society for Postural and Gait Research - Posture and Gait: Control Mechanisms, 1992
Kuo, A. D., Zajac, F. E.
UNIV OREGONBOOKS.1992: A344–A347

• NEUROMUSCULAR ALTERATIONS WITH DIFFERENT BODY ORIENTATIONS DURING CYCLICAL MOVEMENT 11th International Symposium of the Society for Postural and Gait Research - Posture and Gait: Control Mechanisms, 1992
Brown, D. A., Dairaghi, C. A., Stevenson, P. J., Wu, M., Zajac, F. E.
UNIV OREGONBOOKS.1992: A155–A158

• OPTIMAL MUSCULAR COORDINATION STRATEGIES FOR JUMPING JOURNAL OF BIOMECHANICS
Pandy, M. G., Zajac, F. E.
1991; 24 (1): 1-10

• RESTORING UNASSISTED NATURAL GAIT TO PARAPLEGICS VIA FUNCTIONAL NEUROMUSCULAR STIMULATION - A COMPUTER-SIMULATION STUDY IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
Yamaguchi, G. T., Zajac, F. E.
1990; 37 (9): 886-902

• AN INTERACTIVE GRAPHICS-BASED MODEL OF THE LOWER-EXTREMITY TO STUDY ORTHOPEDIC SURGICAL-PROCEDURES IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
1990; 37 (8): 757-767

• BIOMECHANICAL ANALYSIS OF THE CHIARI PELVIC OSTEOTOMY - PRESERVING HIP ABDUCTOR STRENGTH CLINICAL ORTHOPAEDICS AND RELATED RESEARCH
Delp, S. L., BLECK, E. E., Zajac, F. E., Bollini, G.
1990: 189-198

• AN OPTIMAL-CONTROL MODEL FOR MAXIMUM-HEIGHT HUMAN JUMPING JOURNAL OF BIOMECHANICS
Pandy, M. G., Zajac, F. E., Sim, E., Levine, W. S.
1990; 23 (12): 1185-1198

• A MUSCULOSKELETAL MODEL OF THE HUMAN LOWER-EXTREMITY - THE EFFECT OF MUSCLE, TENDON, AND MOMENT ARM ON THE MOMENT ANGLE RELATIONSHIP OF MUSCULOTENDON ACTUATORS AT THE HIP, KNEE, AND ANKLE JOURNAL OF BIOMECHANICS
HOY, M. G., Zajac, F. E., Gordon, M. E.
1990; 23 (2): 157-169

• PARAPLEGIC STANDING CONTROLLED BY FUNCTIONAL NEUROMUSCULAR STIMULATION .2. COMPUTER-SIMULATION STUDIES IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
Khang, G., Zajac, F. E.
1989; 36 (9): 885-894
• PARAPLEGIC STANDING CONTROLLED BY FUNCTIONAL NEUROMUSCULAR STIMULATION. I. COMPUTER-MODEL AND CONTROL-SYSTEM DESIGN. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
Khang, G., Zajac, F. E.
1989; 36 (9): 873-884

• MUSCLE AND TENDON - PROPERTIES, MODELS, SCALING, AND APPLICATION TO BIOMECHANICS AND MOTOR CONTROL. CRITICAL REVIEWS IN BIOMEDICAL ENGINEERING
Zajac, F. E.
1989; 17 (4): 359-411

• A PLANAR MODEL OF THE KNEE-JOINT TO CHARACTERIZE THE KNEE EXTENSOR MECHANISM. JOURNAL OF BIOMECHANICS
Yamaguchi, G. T., Zajac, F. E.
1989; 22 (1): 1-10

• DETERMINING MUSCLES FORCE AND ACTION IN MULTI-ARTICULAR MOVEMENT. EXERCISE AND SPORT SCIENCES REVIEWS/SERIES
Zajac, F. E., Gordon, M. E.
1989; 17: 187-230

• A MECHANICALLY DECOUPLED 2 FORCE COMPONENT BICYCLE PEDAL DYNAMOMETER. JOURNAL OF BIOMECHANICS
NEWMILLER, J., Hull, M. L., Zajac, F. E.
1988; 21 (5): 375-?

• THIGH MUSCLE-ACTIVITY DURING MAXIMUM-HEIGHT JUMPS BY CATS. JOURNAL OF NEUROPHYSIOLOGY
Zajac, F. E.
1985; 53 (4): 979-994

• MAXIMAL HEIGHT JUMPING - OPTIMAL STRATEGIES BASED ON A STUDY OF THE HEEL-OFF TO LIFT-OFF PHASE OF PROPULSION
Zajac, F. E., Levine, W. S., Cho, Y. M., ZOMLEFER, M. R.
PERGAMON-ELSEVIER SCIENCE LTD.1985: 243–43

• RELATIONSHIP AMONG RECRUITMENT ORDER, AXONAL CONDUCTION-VELOCITY, AND MUSCLE-UNIT PROPERTIES OF TYPE-IDENTIFIED MOTOR UNITS IN CAT PLANTARIS MUSCLE. JOURNAL OF NEUROPHYSIOLOGY
Zajac, F. E., Faden, J. S.
1985; 53 (5): 1303-1322

• DEPENDENCE OF JUMPING PERFORMANCE ON MUSCLE PROPERTIES WHEN HUMANS USE ONLY CALF MUSCLES FOR PROPULSION. JOURNAL OF BIOMECHANICS
Zajac, F. E., WICKE, R. W., Levine, W. S.
1984; 17 (7): 513-523

• ANKLE CONTROLS THAT PRODUCE A MAXIMAL VERTICAL JUMP WHEN OTHER JOINTS ARE LOCKED. IEEE TRANSACTIONS ON AUTOMATIC CONTROL
Levine, W. S., Zajac, F. E., BELZER, M. R., ZOMLEFER, M. R.
1983; 28 (11): 1008-1016

• HINDLIMB MUSCULAR-ACTIVITY, KINETICS AND KINEMATICS OF CATS JUMPING TO THEIR MAXIMUM ACHIEVABLE HEIGHTS. JOURNAL OF EXPERIMENTAL BIOLOGY
Zajac, F. E., ZOMLEFER, M. R., Levine, W. S.
1981; 91 (APR): 73-86