Martin Hellman
Professor of Electrical Engineering, Emeritus

Bio

Martin E. Hellman is Professor Emeritus of Electrical Engineering at Stanford University and is affiliated with the university's Center for International Security and Cooperation (CISAC). His recent technical work has focused on bringing a risk informed framework to a potential failure of nuclear deterrence and then using that approach to find surprising ways to reduce the risk. His earlier work included co-inventing public key cryptography, the technology that underlies the secure portion of the Internet. His many honors include election to the National Academy of Engineering and receiving (jointly with his colleague Whit Diffie) the million dollar ACM Turing Award, the top prize in computer science. His most recent project is a book, jointly written with his wife of fifty years, "A New Map for Relationships: Creating True Love at Home & Peace on the Planet," that provides a “unified field theory” of peace by illuminating the connections between nuclear war, conventional war, interpersonal war, and war within our own psyches.

ACADEMIC APPOINTMENTS

• Emeritus Faculty, Acad Council, Electrical Engineering
• Affiliate, Stanford Woods Institute for the Environment

PROGRAM AFFILIATIONS

• Science, Technology and Society

Publications

PUBLICATIONS

• How risky is nuclear optimism? BULLETIN OF THE ATOMIC SCIENTISTS
 Hellman, M. E.
 2011; 67 (2): 47-56

• RESPONSES TO NISTS PROPOSAL COMMUNICATIONS OF THE ACM
 1992; 35 (7): 41-54

• TIME MEMORY PROCESSOR TRADE-OFFS IEEE TRANSACTIONS ON INFORMATION THEORY
 AMIRAZIZI, H. R., HELLMAN, M. E.
 1988; 34 (3): 505-512

• SCIENTISTS MUST HELP STOP THE ARMS-RACE (REPRINTED FROM BREAKTHROUGH EMERGING NEW THINKING, 1988) SCIENTIST
 Kapitza, S. P., HELLMAN, M. E.
 1988; 2 (2): 22-22

• ON SECRET SHARING SYSTEMS IEEE TRANSACTIONS ON INFORMATION THEORY
KARNIN, E. D., Greene, J. W., HELLMAN, M. E.
1983; 29 (1): 35-41

• THE LARGEST SUPER-INCREASING SUBSET OF A RANDOM SET IEEE TRANSACTIONS ON INFORMATION THEORY
 KARNIN, E. D., HELLMAN, M. E.
 1983; 29 (1): 146-148

• ANOTHER CRYPTANALYTIC ATTACK ON A CRYPTOSYSTEM FOR MULTIPLE COMMUNICATION INFORMATION PROCESSING LETTERS
 HELLMAN, M. E.

• ON THE SECURITY OF MULTIPLE ENCRYPTION COMMUNICATIONS OF THE ACM
 Merkle, R. C., HELLMAN, M. E.
 1981; 24 (7): 465-467

• ON MULTIPLE ENCRYPTION SECURITY - REPLY COMMUNICATIONS OF THE ACM
 Merkle, R. C., HELLMAN, M. E.
 1981; 24 (11): 776-776

• REPORT OF THE PUBLIC CRYPTOGRAPHY STUDY-GROUP ACADEME-BULLETIN OF THE AAUP
 Baum, W. A., Heyman, I. M., BRANDIN, D. H., Buck, R. C., DAVIDA, G. I., Handelman, G., HELLMAN, M. E., Kaplan, W., Schwartz, D. C.
 1981; 67 (6): 372-379

• A CRYPTANALYTIC TIME-MEMORY TRADE-OFF IEEE TRANSACTIONS ON INFORMATION THEORY
 HELLMAN, M. E.
 1980; 26 (4): 401-406

• PRIVACY AND AUTHENTICATION - INTRODUCTION TO CRYPTOGRAPHY PROCEEDINGS OF THE IEEE
 Diffie, W., HELLMAN, M. E.
 1979; 67 (3): 397-427

• CONVOLUTIONAL ENCODING FOR WYNER WIRETAP CHANNEL IEEE TRANSACTIONS ON INFORMATION THEORY
 Verriest, E., HELLMAN, M. E.
 1979; 25 (2): 234-236

• FOILING COMPUTER CRIME .1. DES WILL BE TOTALLY INSECURE WITHIN 10 YEARS IEEE SPECTRUM
 HELLMAN, M. E.
 1979; 16 (7): 32-39

• MATHEMATICS OF PUBLIC-KEY CRYPTOGRAPHY SCIENTIFIC AMERICAN
 HELLMAN, M. E.
 1979; 241 (2): 146-?

• HIDING INFORMATION AND SIGNATURES IN TRAPDOOR KNAPSACKS IEEE TRANSACTIONS ON INFORMATION THEORY
 Merkle, R. C., HELLMAN, M. E.
 1978; 24 (5): 525-530

• IMPROVED ALGORITHM FOR COMPUTING LOGARITHMS OVER GF(P) AND ITS CRYPTOGRAPHIC SIGNIFICANCE IEEE TRANSACTIONS ON INFORMATION THEORY
 POHLIG, S. C., HELLMAN, M. E.
 1978; 24 (1): 106-110

• GAUSSIAN WIRE-TAP CHANNEL IEEE TRANSACTIONS ON INFORMATION THEORY
 LEUNGYANCHEONG, S. K., HELLMAN, M. E.
 1978; 24 (4): 451-456

• EXHAUSTIVE CRYPT-ANALYSIS OF NBS DATA ENCRYPTION STANDARD COMPUTER
 Diffie, W., HELLMAN, M. E.
 1977; 10 (6): 74-84
• COMPUTER ENCRYPTION - KEY SIZE SCIENCE
 HELLMAN, M. E.
 1977; 198 (4312): 8-8

• NOTE ON WYNERS WIRETAP CHANNEL IEEE TRANSACTIONS ON INFORMATION THEORY
 CARLEIAL, A. B., HELLMAN, M. E.
 1977; 23 (3): 387-390

• EXTENSION OF SHANNON THEORY APPROACH TO CRYPTOGRAPHY IEEE TRANSACTIONS ON INFORMATION THEORY
 HELLMAN, M. E.
 1977; 23 (3): 289-294

• CONCERNING A BOUND ON UNDETECTED ERROR PROBABILITY IEEE TRANSACTIONS ON INFORMATION THEORY
 LEUNGYANCHEONG, S. K., HELLMAN, M. E.
 1976; 22 (2): 235-237

• OPTIMAL FINITE MEMORY LEARNING ALGORITHMS FOR FINITE SAMPLE PROBLEM INFORMATION AND CONTROL
 COVER, T. M., Freedman, M. A., HELLMAN, M. E.
 1976; 30 (1): 49-85

• NEW DIRECTIONS IN CRYPTOGRAPHY IEEE TRANSACTIONS ON INFORMATION THEORY
 Diffie, W., HELLMAN, M. E.
 1976; 22 (6): 644-654

• TREE CODING WITH A FIDELITY CRITERION IEEE TRANSACTIONS ON INFORMATION THEORY
 DAVIS, C. R., HELLMAN, M. E.
 1975; 21 (4): 373-378

• ERROR DETECTION IN PRESENCE OF SYNCHRONIZATION LOSS IEEE TRANSACTIONS ON COMMUNICATIONS
 HELLMAN, M. E.
 1975; CO23 (5): 538-539

• BISTABLE BEHAVIOR OF ALOHA-TYPE SYSTEMS IEEE TRANSACTIONS ON COMMUNICATIONS
 CARLEIAL, A. B., HELLMAN, M. E.
 1975; CO23 (4): 401-410

• CONVOLUTIONAL SOURCE ENCODING IEEE TRANSACTIONS ON INFORMATION THEORY
 HELLMAN, M. E.
 1975; 21 (6): 651-656

• FINITE-MEMORY ALGORITHMS FOR ESTIMATING MEAN OF A GAUSSIAN DISTRIBUTION IEEE TRANSACTIONS ON INFORMATION THEORY
 HELLMAN, M. E.
 1974; 20 (3): 382-384

• USING NATURAL REDUNDANCY FOR ERROR DETECTION IEEE TRANSACTIONS ON COMMUNICATIONS
 HELLMAN, M. E.
 1974; CO22 (10): 1690-1693