Bio

As a researcher in the Herschlag lab at Stanford, I am working towards the development of a quantitative and predictive model of RNA folding. For this purpose, I use single-molecule fluorescence, small-angle X-ray scattering, and other experimental tools to dissect the structural and dynamic properties of RNA three-dimensional motifs. These 3D motifs are like LEGOS that build diverse and complex functional RNA machines such as the ribosome. The goal is to develop a general model of RNA folding from the understanding of the energetic properties of small recurring building blocks or motifs. Recently, I joined an ongoing collaboration between the Greenleaf and the Herschlag labs that uses next-generation high-throughput sequencing for the characterization of RNA structural motifs. This powerful high-throughput approach developed in the Greenleaf lab allows dissection of the thermodynamic and kinetic properties of thousands of 3D motifs in parallel.

Publications

PUBLICATIONS

- Single-Molecule Fluorescence Reveals Commonalities and Distinctions among Natural and in Vitro-Selected RNA Tertiary Motifs in a Multistep Folding Pathway. *Journal of the American Chemical Society*
 Bonilla, S., Limouse, C., Bisaria, N., Gebala, M., Mabuchi, H., Herschlag, D.
 2017; 18576-18589

- Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere? *Journal of the American Chemical Society*
 Gebala, M., Bonilla, S., Bisaria, N., Herschlag, D.
 2016; 138 (34): 10925-10934

- Cation-Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting. *Journal of the American Chemical Society*
 2015; 137 (46): 14705-14715

- Quantifying Nucleic Acid Ensembles with X-ray Scattering Interferometry. *Methods in enzymology*
 Shi, X., Bonilla, S., Herschlag, D., Harbury, P.
 2015; 558: 75-97

- Roles of Long-Range Tertiary Interactions in Limiting Dynamics of the Tetrahymena Group I Ribozyme. *Journal of the American Chemical Society*
 2014; 136 (18): 6643-6648