Is it possible to understand the molecular structure and function of proteins and nucleic acids in enough detail to make accurate predictions about structure and function? We are mounting a two-pronged attack on this problem using both molecular dynamics simulation and molecular modeling. (i) Simulation attempts to reproduce the structural, thermodynamic and dynamic properties of a macromolecule in as accurate a way as possible. Starting with simple but realistic expressions for the interactions between atoms and classical laws of motion, we calculate a trajectory that specifies the position and velocity of every atom as a function of time. The time-step between calculated structures is small at 10-15 seconds, and we need to reduce hundreds of thousands of sets of atomic coordinates into a simple coherent description. We have simulated with reasonable fidelity the measurable static and dynamic properties of the several different proteins surrounded by thousands of water molecules. Simulation at different temperatures has allowed exploration of the pathways of protein denaturation of entire proteins and small fragments of protein secondary structure (α-helices and β-hairpins). Companion studies of DNA double-helix segments in solution preserve the classical double helix while still showing a wide repertoire of interesting motions. (ii) Molecular modeling attempts to build a model of a macromolecule using known three-dimensional structures and energy minimization as complementary guidelines. Specific examples of this work include the automatic modeling of antibody variable domains, the general modeling of homologous proteins and studies of DNA base-pair mismatches. Questions we are trying to answer include: How can a protein be stabilized by a single amino acid change? How does the sequence of DNA cause local variations of double-helix conformation and stability? Extensive use is made of sophisticated programming, sequence and structural data bases, and computer graphics.
Michael Levitt
http://cap.stanford.edu/profiles/Michael_Levitt/

- Editor, Journal of Molecular Biology (2001)
- Co-director of Program in Mathematics and Molecular Biology, Mathematics and Molecular Biology (1997-2002)

BOARDS, ADVISORY COMMITTEES, PROFESSIONAL ORGANIZATIONS
- Member, National Academy of Sciences (2013 - present)

PROFESSIONAL EDUCATION
- PhD, Gonville and Caius College, Cambridge, Structural Biology (1971)

LINKS
- Levitt Site: http://csb.stanford.edu/levitt/

Research & Scholarship

CURRENT RESEARCH AND SCHOLARLY INTERESTS
I pioneered of computational biology setting up the conceptual and theoretical framework for a field that I am still actively involved in at all levels. More specifically, I still write and maintain computer programs of all types including large simulation packages and molecular graphics interfaces. I have also developed a high-level of expertise in Perl scripting, as well as in the advanced use of the Office Suite of programs (Word, Excel and PowerPoint), which is more important and rare than it may seem. My research focuses on three different but inter-related areas of research. First, we are interested in predicting the folding of a polypeptide chain into a protein with a unique native-structure with particular emphasis on how the hydrophobic forces affect the pathway. We expect hydrophobic interactions to energetically favor structure that are more native-like. In this way, the same stabilizing interactions that exist in the final folded state the search tractable. Second we are interested in predicting protein structure from sequence without regard for the process of folding. Such prediction relies on the well-established paradigms that similar protein sequences imply similar three-dimensional structures. We have focused on the hardest problem in homology modeling: the refinement of a near-native structure to make it more precisely like the actual native structure of protein. We have also focused on how the general similarity of all protein sequences resulting from their evolution from common ancestor sequence affects the nature of the protein universe. Third, we are focusing on mesoscale modeling of large macromolecular complexes such as RNA polymerase and the mammalian chaperonin. In this work, done in close collaboration with experimentalists, we use new morphing strategies combined with normal mode analysis in torsion angle space to overcome problems caused by the size and complexity of these critical, biomedically important systems. All this work depends on the way a molecular structure is represented in terms of the force-field that allows calculation of the potential energy of the system. We employ a very wide variety of such energy functions that extend from knowledge-based statistical potentials for a single interaction center per residue to quantum-mechanical force-fields that include inductive effects as well as polarization.

Teaching

STANFORD ADVISEES
Postdoctoral Faculty Sponsor
Nicholas Corsepius, Joao Pedro Garcia Lopes Maia Rodrigues, Fatima Pardo Avila, Frédéric Poitevin

GRADUATE AND FELLOWSHIP PROGRAM AFFILIATIONS
- Biomedical Informatics (Phd Program)
- Biophysics (Phd Program)
- Structural Biology (Phd Program)
Publications

PUBLICATIONS

- The language of the protein universe. CURRENT OPINION IN GENETICS & DEVELOPMENT
 Scaiewicz, A., Levitt, M.
 2015; 35: 50-56

 Levitt, M.
 2014; 53 (38): 10006-10018

- WeFold: A cooptetition for protein structure prediction. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
 2014; 82 (9): 1850-1868

- Deformable elastic network refinement for low-resolution macromolecular crystallography. Acta crystallographica. Section D, Biological crystallography
 Schröder, G. F., Levitt, M., Brunger, A. T.
 2014; 70: 2241-2255

- Deformable elastic network refinement for low-resolution macromolecular crystallography ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY
 Schroeder, G. F., Levitt, M., Brunger, A. T.
 2014; 70: 2241-2255

- Redundancy-weighting for better inference of protein structural features. Bioinformatics
 Yanover, C., Vanetik, N., Levitt, M., Kolodny, R., Keasar, C.
 2014; 30 (16): 2295-2301

- Millisecond dynamics of RNA polymerase II translocation at atomic resolution. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
 2014; 111 (21): 7665-7670

- Training-free atomistic prediction of nucleosome occupancy. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
 Minary, P., Levitt, M.
 2014; 111 (17): 6293-6298

- Architecture of an RNA Polymerase II Transcription Pre-Initiation Complex. SCIENCE
 2013; 342 (6159): 709-?

- Architecture of an RNA polymerase II transcription pre-initiation complex. Science
 2013; 342 (6159): 1238724-?

- The crystal structures of the eukaryotic chaperonin CCT reveal its functional partitioning. Structure
 Kalisman, N., Schröder, G. F., Levitt, M.
 2013; 21 (4): 540-549

- The Crystal Structures of the Eukaryotic Chaperonin CCT Reveal Its Functional Partitioning. STRUCTURE
 Kalisman, N., Schroeder, G. F., Levitt, M.
 2013; 21 (4): 540-549

- On the Universe of Protein Folds. ANNUAL REVIEW OF BIOPHYSICS, VOL 42
 Kolodny, R., Pereyaslavets, L., Samson, A. O., Levitt, M.
 2013; 42: 559-582
• Evolutionarily consistent families in SCOP: sequence, structure and function. *BMC Structural Biology*
 Pethica, R. B., Levitt, M., Gough, J.
 2012; 12

• KoBaMIN: a knowledge-based minimization web server for protein structure refinement. *Nucleic Acids Research*
 Rodrigues, J. P., Levitt, M., Chopra, G.
 2012; 40 (W1): W323-W328

• KoBaMIN: a knowledge-based minimization web server for protein structure refinement. *Nucleic acids research*
 Rodrigues, J. P., Levitt, M., Chopra, G.
 2012; 40 (Web Server issue): W323-8

• Multiscale natural moves refine macromolecules using single-particle electron microscopy projection images. *Proceedings of the National Academy of Sciences of the United States of America*
 Zhang, J., Minary, P., Levitt, M.
 2012; 109 (25): 9845-9850

• Improving the accuracy of macromolecular structure refinement at 7 Å resolution. *Structure*
 2012; 20 (6): 957-966

• Improving the Accuracy of Macromolecular Structure Refinement at 7 angstrom Resolution. *Structure*
 2012; 20 (6): 957-966

• Comparative modeling and protein-like features of hydrophobic-polar models on a two-dimensional lattice. *Proteins: Structure Function and Bioinformatics*
 Moreno-Hernandez, S., Levitt, M.
 2012; 80 (6): 1683-1693

• Modeling nucleic acids. *Current Opinion in Structural Biology*
 Sim, A. Y., Minary, P., Levitt, M.
 2012; 22 (3): 273-278

• Evaluating Mixture Models for Building RNA Knowledge-Based Potentials. *Journal of Bioinformatics and Computational Biology*
 Sim, A. Y., Schwander, O., Levitt, M., Bernauer, J.
 2012; 10 (2)

• Application of DEN refinement and automated model building to a difficult case of molecular-replacement phasing: the structure of a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum. *Acta Crystallographica Section D-Biological Crystallography*
 Brunger, A. T., Das, D., Deacon, A. M., Grant, J., Terwilliger, T. C., Read, R. J., Adams, P. D., Levitt, M., Schroeder, G. F.
 2012; 68: 391-403

• Modeling and design by hierarchical natural moves. *Proceedings of the National Academy of Sciences of the United States of America*
 Sim, A. Y., Levitt, M., Minary, P.
 2012; 109 (8): 2890-2895

• Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling. *Proceedings of the National Academy of Sciences of the United States of America*
 Kalisman, N., Adams, C. M., Levitt, M.
 2012; 109 (8): 2884-2889

• Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle. *EMBO Journal*
 2012; 31 (3): 720-730

• Optimized Torsion-Angle Normal Modes Reproduce Conformational Changes More Accurately Than Cartesian Modes. *Biophysical Journal*
 Bray, J. K., Weiss, D. R., Levitt, M.

• Clustering to identify RNA conformations constrained by secondary structure. *Proceedings of the National Academy of Sciences of the United States of America* Sim, A. Y., Levitt, M. 2011; 108 (9): 3590-3595

• Nature of the protein universe. *Proceedings of the National Academy of Sciences of the United States of America*
Levitt, M.
2009; 106 (27): 11079-11084

• Structural Basis of Transcription: Backtracked RNA Polymerase II at 3.4 Angstrom Resolution SCIENCE
Wang, D., Bushnell, D. A., Huang, X., Westover, K. D., Levitt, M., Kornberg, R. D.
2009; 324 (5931): 1203-1206

• Outcome of a Workshop on Applications of Protein Models in Biomedical Research STRUCTURE
2009; 17 (2): 151-159

• Generalized ensemble methods for de novo structure prediction PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Shmygelska, A., Levitt, M.
2009; 106 (5): 1415-1420

• Can Morphing Methods Predict Intermediate Structures? JOURNAL OF MOLECULAR BIOLOGY
Weiss, D. R., Levitt, M.
2009; 385 (2): 665-674

• Protein segment finder: an online search engine for segment motifs in the PDB NUCLEIC ACIDS RESEARCH
Samson, A. O., Levitt, M.
2009; 37: D224-D228

• Solvent dramatically affects protein structure refinement PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Chopra, G., Summa, C. M., Levitt, M.
2008; 105 (51): 20239-20244

• Inhibition mechanism of the acetylcholine receptor by alpha-neurotoxins as revealed by normal-mode dynamics BIOCHEMISTRY
Samson, A. O., Levitt, M.
2008; 47 (13): 4065-4070

• How hydrophobic Buckminsterfullerene affects surrounding water structure JOURNAL OF PHYSICAL CHEMISTRY B
Weiss, D. R., Raschke, T. M., Levitt, M.
2008; 112 (10): 2981-2990

• Probing protein fold space with a simplified model JOURNAL OF MOLECULAR BIOLOGY
Minary, P., Levitt, M.
2008; 375 (4): 920-933

• Combining efficient conformational sampling with a deformable elastic network model facilitates structure refinement at low resolution STRUCTURE
Schroeder, G. F., Brunger, A. T., Levitt, M.
2007; 15 (12): 1630-1641

• Simulations of RNA base pairs in a nanodroplet reveal solvation-dependent stability PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Sykes, M. T., Levitt, M.
2007; 104 (30): 12336-12340

• Growth of novel protein structural data PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Levitt, M.
2007; 104 (9): 3183-3188

• Near-native structure refinement using in vacuo energy minimization PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Summa, C. M., Levitt, M.
2007; 104 (9): 3177-3182

• Discussion of "equi-energy sampler" by Kou, Zhou and Wong ANNALS OF STATISTICS
Minary, P., Levitt, M.
2006; 34 (4): 1636-1641

- Spatial regulation and the rate of signal transduction activation *PLOS COMPUTATIONAL BIOLOGY*
 Batada, N. N., Shepp, L. A., Siegmund, D. O., Levitt, M.
 2006; 2 (5): 343-349

- Theory and simulation - Accuracy and reliability in modelling proteins and complexes *CURRENT OPINION IN STRUCTURAL BIOLOGY*
 Janin, J., Levitt, M.
 2006; 16 (2): 139-141

- An atomic environment potential for use in protein structure prediction *JOURNAL OF MOLECULAR BIOLOGY*
 Summa, C. M., Levitt, M., DeGrado, W. F.
 2005; 352 (4): 986-1001

- Describing RNA structure by libraries of clustered nucleotide doublets *JOURNAL OF MOLECULAR BIOLOGY*
 Sykes, M. T., Levitt, M.
 2005; 351 (1): 26-38

- Nonpolar solutes enhance water structure within hydration shells while reducing interactions between them *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 Raschke, T. M., Levitt, M.
 2005; 102 (19): 6777-6782

- Comprehensive evaluation of protein structure alignment methods: Scoring by geometric measures *JOURNAL OF MOLECULAR BIOLOGY*
 Kolodny, R., Koehl, P., Levitt, M.
 2005; 346 (4): 1173-1188

- Inverse kinematics in biology: The protein loop closure problem *INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH*
 Kolodny, R., Guibas, L., Levitt, M., Koehl, P.
 2005; 24 (2-3): 151-163

- Diffusion of nucleoside triphosphates and role of the entry site to the RNA polymerase II active center *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 Batada, N. N., Westover, K. D., Bushnell, D. A., Levitt, M., Kornberg, R. D.
 2004; 101 (50): 17361-17364

- The area derivative of a space-filling diagram *DISCRETE & COMPUTATIONAL GEOMETRY*
 Bryant, R., Edelsbrunner, H., Koehl, P., Levitt, M.
 2004; 32 (3): 293-308

- Detailed hydration maps of benzene and cyclohexane reveal distinct water structures *JOURNAL OF PHYSICAL CHEMISTRY B*
 Raschke, T. M., Levitt, M.
 2004; 108 (35): 13492-13500

- Improved protein structure selection using decoy-dependent discriminatory functions. *BMC structural biology*
 Wang, K., Fain, B., Levitt, M., Samudrala, R.
 2004; 4: 8-?

- Simulating protein evolution in sequence and structure space *CURRENT OPINION IN STRUCTURAL BIOLOGY*
 Xia, Y., Levitt, M.
 2004; 14 (2): 202-207

- Funnel-like organization in sequence space determines the distributions of protein stability and folding rate preferred by evolution *PROTEINS: STRUCTURE FUNCTION AND BIOINFORMATICS*
 Xia, Y., Levitt, M.
 2004; 55 (1): 107-114

- The ASTRAL Compendium in 2004 *NUCLEIC ACIDS RESEARCH*
 Chandonia, J. M., Hon, G., Walker, N. S., Lo Conte, L., Koehl, P., Levitt, M., Brenner, S. E.
 2004; 32: D189-D192
Funnel sculpting for in silico assembly of secondary structure elements of proteins PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Fain, B., Levitt, M.
2003; 100 (19): 10700-10705

A novel approach to decoy set generation: Designing a physical energy function having local minima with native structure characteristics JOURNAL OF MOLECULAR BIOLOGY
Keasar, C., Levitt, M.
2003; 329 (1): 159-174

Protein decoy assembly using short fragments under geometric constraints BIOPOLYMERS
Kolodny, R., Levitt, M.
2003; 68 (3): 278-285

Evidence of turn and salt bridge contributions to beta-hairpin stability: MD simulations of C-terminal fragment from the B1 domain of protein G BIOPHYSICAL CHEMISTRY
Tsai, J., Levitt, M.
2002; 101: 187-201

Sequence variations within protein families are linearly related to structural variations JOURNAL OF MOLECULAR BIOLOGY
Koehl, P., Levitt, M.
2002; 323 (3): 551-562

Small libraries of protein fragments model native protein structures accurately JOURNAL OF MOLECULAR BIOLOGY
Kolodny, R., Koehl, P., Guibas, L., Levitt, M.
2002; 323 (2): 297-307

Roles of mutation and recombination in the evolution of protein thermodynamics PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Xia, Y., Levitt, M.
2002; 99 (16): 10382-10387

Design of an optimal Chebyshev-expanded discrimination function for globular proteins PROTEIN SCIENCE
Fain, B., Xia, Y., Levitt, M.
2002; 11 (8): 2010-2021

A comprehensive analysis of 40 blind protein structure predictions. BMC structural biology
Samudrala, R., Levitt, M.
2002; 2: 3-?

Protein topology and stability define the space of allowed sequences PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Koehl, P., Levitt, M.
2002; 99 (3): 1280-1285

Within the twilight zone: A sensitive profile-profile comparison tool based on information theory JOURNAL OF MOLECULAR BIOLOGY
Yona, G., Levitt, M.
2002; 315 (5): 1257-1275

Improved recognition of native-like protein structures using a family of designed sequences PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Koehl, P., Levitt, M.
2002; 99 (2): 691-696

ASTRAL compendium enhancements NUCLEIC ACIDS RESEARCH
Chandonia, J. M., Walker, N. S., Conte, L. L., Koehl, P., Levitt, M., Brenner, S. E.
2002; 30 (1): 260-263

Peter Kollman - Obituary NATURE STRUCTURAL BIOLOGY
Levitt, M., Duggett, V.

De novo protein design. I. In search of stability and specificity. *Journal of Molecular Biology*. Koehl, P., Levitt, M.
De novo protein design. II. Plasticity in sequence space *JOURNAL OF MOLECULAR BIOLOGY*
Koehl, P., Levitt, M.
1999; 293 (5): 1183-1193

Structuro-based conformational preferences of amino acids *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
Koehl, P., Levitt, M.
1999; 96 (22): 12524-12529

Hierarchy of structure loss in MD simulations of src SH3 domain unfolding *JOURNAL OF MOLECULAR BIOLOGY*
Tsai, J., Levitt, M., Baker, D.

Theory and simulation - Can theory challenge experiment? Editorial overview *CURRENT OPINION IN STRUCTURAL BIOLOGY*
Koehl, P., Levitt, M.
1999; 9 (2): 155-156

A brighter future for protein structure prediction. *Nature structural biology*
Koehl, P., Levitt, M.
1999; 6 (2): 108-111

A combined approach for ab initio construction of low resolution protein tertiary structures from sequence. *Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing*
Samudrala, R., Xia, Y., Levitt, M., Huang, E. S.
1999: 505-516

Ab initio protein structure prediction using a combined hierarchical approach 3rd Meeting on the Critical Assessment of Techniques for Protein Structure Prediction (CASP3)
Samudrala, R., Xia, Y., Huang, E., Levitt, M.
WILEY-BLACKWELL 1999: 194–198

The PRESAGE database for structural genomics *NUCLEIC ACIDS RESEARCH*
Brenner, S. E., Barken, D., Levitt, M.
1999; 27 (1): 251-253

Accuracy of side-chain prediction upon near-native protein backbones generated by ab initio folding methods *PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS*
Huang, E. S., Koehl, P., Levitt, M., Pappu, R. V., Ponder, J. W.
1998; 33 (2): 204-217

Simulating water and the molecules of life *SCIENTIFIC AMERICAN*
Gerstein, M., Levitt, M.
1998; 279 (5): 100-105

A unified statistical framework for sequence comparison and structure comparison *Colloquium on Computational Biomolecular Science*
Levitt, M., Gerstein, M.
NATL ACAD SCIENCES 1998: 5913–20

Comprehensive assessment of automatic structural alignment against a manual standard, the scop classification of proteins *PROTEIN SCIENCE*
Gerstein, M., Levitt, M.
1998; 7 (2): 445-456

Simulating the minimum core for hydrophobic collapse in globular proteins *PROTEIN SCIENCE*
Tsai, J., Gerstein, M., Levitt, M.
1997; 6 (12): 2606-2616

A structural census of the current population of protein sequences *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
Gerstein, M., Levitt, M.

• Factors affecting the ability of energy functions to discriminate correct from incorrect folds. *Journal of Molecular Biology* 1997; 266 (4): 831-846

• Keeping the shape but changing the charges: A simulation study of urea and its iso-steric analogs. *Journal of Chemical Physics* 1996; 104 (23): 9417-9430

• From structure to sequence and back again. *Journal of Molecular Biology* 1996; 258 (1): 201-209

• Using a hydrophobic contact potential to evaluate native and near-native folds generated by molecular dynamics simulations. *Journal of Molecular Biology* 1996; 257 (3): 716-725

• Through the breach. *Current opinion in structural biology* 1996; 6 (2): 193-194

• Theory and simulation through the breach. *Current Opinion in Structural Biology* 1996; 6 (2): 193-194

• Using iterative dynamic programming to obtain accurate pairwise and multiple alignments of protein structures. *Proceedings / ... International Conference on Intelligent Systems for Molecular Biology ; ISMB. International Conference on Intelligent Systems for Molecular Biology* 1996; 4: 59-67

• RECOGNIZING NATIVE FOLDS BY THE ARRANGEMENT OF HYDROPHOBIC AND POLAR RESIDUES. Huang, E. S., Subbiah, S., Levitt, M. JOURNAL OF MOLECULAR BIOLOGY 1995; 252 (5): 709-720

• DIFFERENT PROTEIN SEQUENCES CAN GIVE RISE TO HIGHLY SIMILAR FOLDS THROUGH DIFFERENT STABILIZING INTERACTIONS. Laurents, D. V., Subbiah, S., Levitt, M. PROTEIN SCIENCE 1994; 3 (11): 1938-1944

• WATER - NOW YOU SEE IT, NOW YOU DONT. Levitt, M., Park, B. H. STRUCTURE 1993; 1 (4): 223-226

• PROTEIN UNFOLDING PATHWAYS EXPLORED THROUGH MOLECULAR-DYNAMICS SIMULATIONS. Daggett, V., Levitt, M. JOURNAL OF MOLECULAR BIOLOGY 1993; 232 (2): 600-619

• STRUCTURAL SIMILARITY OF DNA-BINDING DOMAINS OF BACTERIOPHAGE REPRESSORS AND THE GLOBIN CORE. Subbiah, S., Laurens, D. V., Levitt, M. CURRENT BIOLOGY
1993; 3 (3): 141-148

- **REALISTIC SIMULATIONS OF NATIVE-PROTEIN DYNAMICS IN SOLUTION AND BEYOND** *ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE*
 Daggett, V., Levitt, M.
 1993; 22: 353-380

- **INDUCED PEPTIDE CONFORMATIONS IN DIFFERENT ANTIBODY COMPLEXES - MOLECULAR MODELING OF THE 3-DIMENSIONAL STRUCTURE OF PEPTIDE ANTIBODY COMPLEXES USING NMR-DERIVED DISTANCE REAstraints** *BIOCHEMISTRY*
 Scherf, T., Hiller, R., Naider, F., Levitt, M., Anglister, J.
 1992; 31 (30): 6884-6897

- **ACCURATE MODELING OF PROTEIN CONFORMATION BY AUTOMATIC SEGMENT MATCHING** *JOURNAL OF MOLECULAR BIOLOGY*
 Levitt, M.
 1992; 226 (2): 507-533

- **A MODEL OF THE MOLTEN GLOBULE STATE FROM MOLECULAR-DYNAMICS SIMULATIONS** *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 Daggett, V., Levitt, M.
 1992; 89 (11): 5142-5146

- **A LATTICE MODEL FOR PROTEIN-STRUCTURE PREDICTION AT LOW RESOLUTION** *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 Hinds, D. A., Levitt, M.
 1992; 89 (7): 2536-2540

- **MOLECULAR-DYNAMICS SIMULATIONS OF HELIX DENATURATION** *JOURNAL OF MOLECULAR BIOLOGY*
 Daggett, V., Levitt, M.
 1992; 223 (4): 1121-1138

- **A MOLECULAR-DYNAMICS SIMULATION OF THE C-TERMINAL FRAGMENT OF THE L7/L12 RIBOSOMAL-PROTEIN IN SOLUTION** *CHEMICAL PHYSICS*
 Daggett, V., Levitt, M.
 1991; 158 (2-3): 501-512

- **STRUCTURAL AND KINETIC STUDIES OF THE FAB FRAGMENT OF A MONOCLONAL ANTI-SPIN LABEL ANTIBODY BY NUCLEAR-MAGNETIC-RESONANCE** *JOURNAL OF MOLECULAR BIOLOGY*
 Theriault, T. P., Leahy, D. J., Levitt, M., McConnell, H. M., Rule, G. S.
 1991; 221 (1): 257-270

- **ACCURATE PREDICTION OF THE STABILITY AND ACTIVITY EFFECTS OF SITE-DIRECTED MUTAGENESIS ON A PROTEIN CORE** *NATURE*
 Lee, C., Levitt, M.
 1991; 352 (6334): 448-451

- **REAL-TIME INTERACTIVE FREQUENCY FILTERING OF MOLECULAR-DYNAMICS TRAJECTORIES** *JOURNAL OF MOLECULAR BIOLOGY*
 Levitt, M.
 1991; 220 (1): 1-4

- **ENHANCED STABILITY OF SUBTILISIN BY 3 POINT MUTATIONS** *BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY*
 Narhi, L. O., STABINSKY, Y., Levitt, M., Miller, L., Sachdev, R., Finley, S., Park, S., Kolvenbach, C., Arakawa, T., Zukowski, M.

- **Protein Folding** *Curr. Opinions Struct. Biol.*
 Levitt M
 1991; 1: 224-229

- **NMR-DERIVED MODEL FOR A PEPTIDE-ANTIBODY COMPLEX** *BIOCHEMISTRY*
 Zilber, B., Scherf, T., Levitt, M., Anglister, J.
 1990; 29 (43): 10032-10041
• CONFORMATIONS OF IMMUNOGLOBULIN HYPERVARIABLE REGIONS *NATURE*
 1989; 342 (6252): 877-883

• A HUMANIZED ANTIBODY THAT BINDS TO THE INTERLEUKIN-2 RECEPTOR *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 1989; 86 (24): 10029-10033

• PROBING ANTIBODY DIVERSITY BY 2D NMR - COMPARISON OF AMINO-ACID SEQUENCES, PREDICTED STRUCTURES, AND OBSERVED ANTIBODY ANTIGEN INTERACTIONS IN COMPLEXES OF 2 ANTIPEPTIDE ANTIBODIES *BIOCHEMISTRY*
 Levy, R., ASSULIN, O., Scherf, T., Levitt, M., Anglister, J.
 1989; 28 (18): 7168-7175

• STABILIZATION OF PHAGE-T4 LYSOZYME BY ENGINEERED DISULFIDE BONDS *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 Matsumura, M., Becktel, W. J., Levitt, M., Matthews, B. W.
 1989; 86 (17): 6562-6566

• MOLECULAR-DYNAMICS OF MACROMOLECULES IN WATER *CHEMICA SCRIPTA*
 Levitt, M.
 1989; 29A: 197-203

• ACCURATE SIMULATION OF PROTEIN DYNAMICS IN SOLUTION *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 Levitt, M., Sharon, R.
 1988; 85 (20): 7557-7561

• AROMATIC RINGS ACT AS HYDROGEN-BOND ACCEPTORS *JOURNAL OF MOLECULAR BIOLOGY*
 Levitt, M., Perutz, M. F.
 1988; 201 (4): 751-754

• CONTRIBUTION OF TRYPTOPHAN RESIDUES TO THE COMBINING SITE OF A MONOCLONAL ANTI DINITROPHENYL SPIN-LABEL ANTIBODY *BIOCHEMISTRY*
 Anglister, J., Bond, M. W., Frey, T., Leahy, D., Levitt, M., McConnell, H. M., Rule, G. S., Tomasello, I., Whittaker, M.
 1987; 26 (19): 6058-6064

• THE PREDICTED STRUCTURE OF IMMUNOGLOBULIN-D13 AND ITS COMPARISON WITH THE CRYSTAL-STRUCTURE *SCIENCE*
 1986; 233 (4765): 755-758

• HELIX TO HELIX PACKING IN PROTEINS *JOURNAL OF MOLECULAR BIOLOGY*
 Chothia, C., Levitt, M., Richardson, D.

• PERIODICITY OF DEOXYRIBONUCLEASE-I DIGESTION OF CHROMATIN *SCIENCE*
 Prunell, A., Kornberg, R. D., Lutter, L., Klug, A., Levitt, M., CRICK, F. H.
 1979; 204 (4395): 855-858

• CONFORMATION OF AMINO-ACID SIDE-CHAINS IN PROTEINS *JOURNAL OF MOLECULAR BIOLOGY*
 Janin, J., Wodak, S., Levit, M., MAIGRET, B.
 1978; 125 (3): 357-386

• STRUCTURE OF PROTEINS - PACKING OF ALPHA-HELICES AND PLEATED SHEETS *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 Chothia, C., Levitt, M., Richardson, D.
 1977; 74 (10): 4130-4134

• STRUCTURE OF NUCLEOSOME CORE PARTICLES OF CHROMATIN *NATURE*
 Finch, J. T., Lutter, L. C., Rhodes, D., Brown, R. S., Rushton, B., Levit, M., Klug, A.
1977; 269 (5623): 29-36

- **STRUCTURAL PATTERNS IN GLOBULAR PROTEINS** *Nature*
 Levitt, M., Chothia, C.
 1976; 261 (5561): 552-558