Michael Harris is a PhD candidate in the Emmett Interdisciplinary Program in Environment and Resources within the School of Earth Sciences. He is working to improve public health policies and reduce societal inequalities. During his PhD, he has focused on sanitation infrastructure policies and programs in sub-Saharan to understand the costs, benefits, and child health implications of sanitation choices made by households, governments, and non-governmental organizations.

Michael focused on environmental fluid mechanics and water resource management during his B.S. and M.S. degrees in Civil in Environmental Engineering at the Georgia Institute of Technology. During this time, he worked for MACTEC Engineering and Consulting on analyzing flood plains and environmental fluid mechanics for influent and effluent designs and Yellowstone National Park on water conservation and hydroelectric power. After receiving his M.S. degree, Michael transitioned into working on a water and sanitation research project for Stanford University in Tanzania focusing on child health and behavior change education. Since then, he has worked on other water, sanitation, and hygiene studies in Kenya and Bangladesh.

Michael's work has been supported by the William C. and Jeanne M. Landreth Fellowship in E-IPER, the Ewing York Foundation E-IPER Fellowship, and an EPA STAR Graduate Research Fellowship.

CURRENT RESEARCH AND SCHOLARLY INTERESTS
Michael hopes to identify how ecosystem services and environmental health indicators are affected by sanitation infrastructure in development scenarios as a way to push the focus beyond that of household-level sanitation.

PUBLICATIONS
• Community-Level Sanitation Coverage More Strongly Associated with Child Growth and Household Drinking Water Quality than Access to a Private Toilet in Rural Mali. *Environmental science & technology*
 Harris, M., Alzua, M. L., Osbert, N., Pickering, A.
 2017

• Ruminants Contribute Fecal Contamination to the Urban Household Environment in Dhaka, Bangladesh *ENVIRONMENTAL SCIENCE & TECHNOLOGY*
 2016; 50 (9): 4642-4649