The cytoskeleton in neurons is made up of three interacting structural complexes: microfilaments (MFs), neurofilaments (NFs), and microtubules (MTs). They serve multiple roles in neurons. First, they provide structural organization for the cell interior, helping to establish metabolic compartments. Second, they serve as tracks for intracellular transport, especially axonal transport, which is critical for neuronal survival. Finally, the cytoskeleton comprises the core framework of neuronal morphologies. Disorganization of the cytoskeleton network is a prominent cytopathological feature of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), infantile spinal muscular atrophy (SMA), and Alzheimer diseases. Our major focus is to elucidate biological functions of cytoskeletal associated proteins in neurons and to define the cellular and molecular basis for how these proteins contribute to the structure and function of neurons. Cellular and molecular approaches are being employed both in vitro and in vivo. Our experimental models include:

1) transfection assays,
2) primary neuron cultures,
3) in vitro protein-protein interaction assays,
4) yeast two-hybrid screening,
5) specific gene targeting in mice. Defining the biological functions of cytoskeletal organizing proteins would significantly advance our understanding of pathogenesis of neurodegenerative disorders.

Teaching

COURSES

2018-19

• Intracellular Trafficking and Neurodegeneration: NENS 67N (Win)
• Neurobiology of Disease Seminar: NENS 205 (Win)

2017-18
• Intracellular Trafficking and Neurodegeneration: NENS 67N (Win)

2016-17

• Intracellular Trafficking and Neurodegeneration: NENS 67N (Win, Sum)

• Neuroscience Core Curriculum: Translational Neuroscience: NENS 207, NEPR 214 (Spr)

2015-16

• Intracellular Trafficking and Neurodegeneration: NENS 67N (Win, Sum)

• Neuroscience Core Curriculum: Translational Neuroscience: NENS 207 (Spr)

STANFORD ADVISEES

Postdoctoral Faculty Sponsor

Ivan Millan

GRADUATE AND FELLOWSHIP PROGRAM AFFILIATIONS

• Neurosciences (Phd Program)

Publications

PUBLICATIONS

• Giant axonal neuropathy CELLULAR AND MOLECULAR LIFE SCIENCES
 Yang, Y., Allen, E., Ding, J., Wang, W.
 2007; 64 (5): 601-609

• Retrolinkin, a membrane protein, plays an important role in retrograde axonal transport PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
 Liu, J., Ding, J., Wu, C., Bhagavatula, P., Cai, B., Chu, S., Mobley, W. C., Yang, Y.
 2007; 104 (7): 2223-2228

• Gene targeting of GAN in mouse causes a toxic accumulation of microtubule-associated protein 8 and impaired retrograde axonal transport HUMAN MOLECULAR GENETICS
 2006; 15 (9): 1451-1463

• Microtubule-associated protein 8 contains two microtubule binding sites BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
 2006; 339 (1): 172-179

• Gigaxonin interacts with tubulin folding cofactor B and controls its degradation through the ubiquitin-proteasome pathway CURRENT BIOLOGY
 Wang, W., Ding, J. Q., Allen, E., Zhu, P., Zhang, L., Vogel, H., Yang, Y. M.
 2005; 15 (22): 2050-2055

• Gigaxonin-controlled degradation of MAP1B light chain is critical to neuronal survival NATURE
 Allen, E., Ding, J. Q., Wang, W., Pramanik, S., Chou, J., Yau, V., Yang, Y. M.
 2005; 438 (7065): 224-2248

• BPAG1 n4 is essential for retrograde axonal transport in sensory neurons JOURNAL OF CELL BIOLOGY
 2003; 163 (2): 223-229

• Microtubule-associated protein 1B: a neuronal binding partner for gigaxonin JOURNAL OF CELL BIOLOGY
 2002; 158 (3): 427-433

• An epidermal plakin that integrates actin and microtubule networks at cellular junctions JOURNAL OF CELL BIOLOGY
 Karakesisoglou, I., Yang, Y. M., Fuchs, E.
• Crossroads can cytoskeletal highways *CELL*
 Fuchs, E., Yang, Y. M.
 1999; 98 (5): 547-550

• Integrators of the cytoskeleton that stabilize microtubules *CELL*
 Yang, Y. M., Bauer, C., Strasser, G., Wollman, R., Julien, J. P., Fuchs, E.
 1999; 98 (2): 229-238

• A dysfunctional desmin mutation in a patient with severe generalized myopathy *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 1998; 95 (19): 11312-11317

• Developmental expression of BPAG1-n: Insights into the spastic ataxia and gross neurologic degeneration in dystonia musculorum mice *DEVELOPMENTAL BIOLOGY*
 Dowling, J., Yang, Y. M., Wollmann, R., Reichardt, L. F., Fuchs, E.
 1997; 187 (2): 131-142

• Intermediate filament linker proteins *50th Annual Symposium of the Society-of-General-Physiologists - Cytoskeletal Regulation of Membrane Function*
 ROCKEFELLER UNIV PRESS.1997: 141–148

• An essential cytoskeletal linker protein connecting actin microfilaments to intermediate filaments *CELL*
 Yang, Y. M., Dowling, J., Yu, Q. C., Kouklis, P., Cleveland, D. W., Fuchs, E.
 1996; 86 (4): 655-665

• SEQUENTIAL REQUIREMENT OF HEPATOCYTE GROWTH-FACTOR AND NEUREGULIN IN THE MORPHOGENESIS AND DIFFERENTIATION OF THE MAMMARY-GLAND *JOURNAL OF CELL BIOLOGY*
 Yang, Y. M., Spitzer, E., Meyer, D., Sachs, M., Niemann, C., Hartmann, G., Weidner, K. M., Birchmeier, C., BIRCHMEIER, W.

• MEMBERS OF THE FATTY-ACID-BINDING PROTEIN FAMILY ARE DIFFERENTIATION FACTORS FOR THE MAMMARY-GLAND *JOURNAL OF CELL BIOLOGY*
 1994; 127 (4): 1097-1109