Brian Kobilka
Helene Irwin Fagan Chair in Cardiology and Professor, by courtesy, of Chemical and Systems Biology
Molecular & Cellular Physiology

Bio

ACADEMIC APPOINTMENTS
• Professor, Molecular & Cellular Physiology
• Professor (By courtesy), Chemical and Systems Biology
• Member, Bio-X
• Member, Cardiovascular Institute
• Member, Child Health Research Institute
• Member, Stanford Neurosciences Institute

LINKS
• Personal Web site: http://med.stanford.edu/kobilkalab/

Research & Scholarship

CURRENT RESEARCH AND SCHOLARLY INTERESTS
My laboratory is involved in studying several aspects of adrenergic receptor biology. Adrenergic receptors form the interface between the sympathetic nervous system and the cardiovascular system and play a critical role in the regulation of cardiovascular function. Specific projects include:

1- RECEPTOR STRUCTURE: We are interested in understanding the three dimensional structure of adrenergic receptors and learning about the conformational changes that mediate signal transduction. We are taking several experimental approaches including mutagenesis, biochemical, and biophysical studies.

2- INTRACELLULAR TRAFFICKING OF ADRENERGIC RECEPTORS: The function of receptors can be modulated by changes in receptor structure (phosphorylation) and by changes in subcellular localization. We are using immunocytochemical approaches to study the targeting of receptors to specific subcellular domains and agonist mediated redistribution of receptors. Our goal is to determine the functional significance of differences in targeting and trafficking that we have observed in several adrenergic receptors, and to identify cellular proteins that mediate receptor trafficking.

3- PHYSIOLOGIC RELEVANCE OF ADRENERGIC RECEPTOR SUBTYPE DIVERSITY: Multiple closely related subtypes of adrenergic receptors have been identified through cloning studies. We are using targeted gene modification in mice to study the physiologic role of these closely related subtypes. We have disrupted the genes for five adrenergic receptors (alpha 2a, alpha 2b, alpha 2c, beta 1, and beta2) and are investigating the consequence of these disruptions on neural and cardiovascular physiology.
Teaching

STANFORD ADVISEES

Postdoctoral Faculty Sponsor

Weijiao Huang, John Janetko, Hideaki Kato, Kaavya Krishna Kumar, Matthieu Masureel, Rabindra Shivnaraine, Aiveliagaram Venkatakrishnan

Doctoral Dissertation Reader (AC)

Thomas Chew

Doctoral Dissertation Advisor (AC)

Rachel Matt

GRADUATE AND FELLOWSHIP PROGRAM AFFILIATIONS

- Biophysics (Phd Program)
- Molecular and Cellular Physiology (Phd Program)
- Neurosciences (Phd Program)

Publications

PUBLICATIONS

- Structure-based discovery of opioid analgesics with reduced side effects. *Nature*
 2016; 537 (7619): 185-?

- Structure-based discovery of opioid analgesics with reduced side effects. *Nature*
 2016; 537 (7619): 185-190

- Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. *Nature*
 2016; 535 (7610): 182-?

- Accessible Mannitol-Based Amphiphiles (MNAs) for Membrane Protein Solubilisation and Stabilisation. *Chemistry-A European Journal*
 2016; 22 (21): 7068-7073

- Highly Branched Pentasaccharide-Bearing Amphiphiles for Membrane Protein Studies. *Journal of the American Chemical Society*
 2016; 138 (11): 3789-3796

- Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. *Nature*
 2016; 531 (7594): 335-340

- Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. *Nature*
 2016; 531 (7594): 335-340

- In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures. *Acta Crystallographica Section D-Structural Biology*

- **Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation** *CHEMICAL COMMUNICATIONS*
 Bae, H. E., Mortensen, J. S., Ribeiro, O., Du, Y., Ehson, M., Kobilka, B. K., Loland, C. J., Byrne, B., Chae, P. S.
 2016; 52 (81): 12104-12107

- **High-density grids for efficient data collection from multiple crystals.** *Acta crystallographica. Section D, Structural biology*
 2016; 72: 2-11

- **Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape** *NATURE METHODS*
 Alsteens, D., Pfreundschuh, M., Zhang, C., Spoerri, P. M., Coughlin, S. R., Kobilka, B. K., Mueller, D. J.
 2015; 12 (9): 845-851

- **Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape.** *Nature methods*
 Alsteens, D., Pfreundschuh, M., Zhang, C., Spoerri, P. M., Coughlin, S. R., Kobilka, B. K., Müller, D. J.
 2015; 12 (9): 845-851

- **Propagation of conformational changes during mu-opioid receptor activation** *NATURE*
 Sounier, R., Mas, C., Steyaert, J., Laeremans, T., Manglik, A., Huang, W., Kobilka, B. K., Demene, H., Granier, S.
 2015; 524 (7565): 375-378

- **Propagation of conformational changes during µ-opioid receptor activation.** *Nature*
 Sounier, R., Mas, C., Steyaert, J., Laeremans, T., Manglik, A., Huang, W., Kobilka, B. K., Déméné, H., Granier, S.
 2015; 524 (7565): 375-378

- **Structural insights into µ-opioid receptor activation.** *Nature*
 2015; 524 (7565): 315-321

- **Structural insights into mu-opioid receptor activation** *NATURE*
 2015; 524 (7565): 315-321

- **Novel Xylene-Linked Maltoside Amphiphiles (XMAs) for Membrane Protein Stabilisation.** *Chemistry (Weinheim an der Bergstrasse, Germany)*
 2015; 21 (28): 10008-10013

- **SIGNAL TRANSDUCTION. Structural basis for nucleotide exchange in heterotrimeric G proteins.** *Science*
 2015; 348 (6241): 1361-1365

- **Structural basis for nucleotide exchange in heterotrimeric G proteins** *SCIENCE*
 2015; 348 (6241): 1361-1365

- **Structural Insights into the Dynamic Process of beta(2)-Adrenergic Receptor Signaling** *CELL*
 2015; 161 (5): 1101-1111

- **Effective Application of Bicelles for Conformational Analysis of G Protein-Coupled Receptors by Hydrogen/Deuterium Exchange Mass Spectrometry** *JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY*
 2015; 26 (5): 808-817
• Development and Characterization of Pepducins as Gs-biased Allosteric Agonists. *Journal of Biological Chemistry*
 Carr, R., Du, Y., Quoyer, J., Panettieri, R. A., Janz, J. M., Bouvier, M., Kobilka, B. K., Benovic, J. L.
 2014; 289 (52): 35668-35684

• Goniometer-based femtosecond crystallography with X-ray free electron lasers *Proceedings of the National Academy of Sciences of the United States of America*
 2014; 111 (48): 17122-17127

• Modified T4 Lysozyme Fusion Proteins Facilitate G Protein-Coupled Receptor Crystallogenesis *Structure*
 Thorsen, T. S., Matt, R., Weis, W. I., Kobilka, B. K.
 2014; 22 (11): 1657-1664

• Nanoscale high-content analysis using compositional heterogeneities of single proteoliposomes. *Nature Methods*
 2014; 11 (9): 931-934

• Visualization of arrestin recruitment by a G-protein-coupled receptor *Nature*
 2014; 512 (7513): 218-22

• Covalent agonists for studying G protein-coupled receptor activation. *Proceedings of the National Academy of Sciences of the United States of America*
 Weichert, D., Kruse, A. C., Manglik, A., Hiller, C., Zhang, C., Hübscher, H., Kobilka, B. K., Gmeiner, P.
 2014; 111 (29): 10744-10748

• Novel Insights into M-3 Muscarinic Acetylcholine Receptor Physiology and Structure *14th International Symposium on Cholinergic Mechanisms (ISCM)*
 Kruse, A. C., Li, J., Hu, J., Kobilka, B. K., Wess, J.
 HUMANA PRESS INC. 2014: 316–23

• Muscarinic acetylcholine receptors: novel opportunities for drug development *Nature Reviews Drug Discovery*
 Kruse, A. C., Kobilka, B. K., Gautam, D., Sexton, P. M., Christopoulos, A., Wess, J.
 2014; 13 (7): 549-560

• Muscarinic acetylcholine receptor X-ray structures: potential implications for drug development *Current Opinion in Pharmacology*
 Kruse, A. C., Hu, J., Kobilka, B. K., Wess, J.
 2014; 16: 24-30

• The role of protein dynamics in GPCR function: insights from the beta(2)AR and rhodopsin *Current Opinion in Cell Biology*
 Manglik, A., Kobilka, B.
 2014; 27: 136-143

• A general protocol for the generation of Nanobodies for structural biology *Nature Protocols*
 2014; 9 (3): 674-693

• Regulation of beta(2)-Adrenergic Receptor Function by Conformationally Selective Single-Domain Intrabodies *Molecular Pharmacology*
 Staus, D. P., Wingler, L. M., Strachan, R. T., Rasmussen, S. G., Pardon, E., Ahn, S., Steyaert, J., Kobilka, B. K., Lefkowitz, R. J.
 2014; 85 (3): 472-481

• Activation and allosteric modulation of a muscarinic acetylcholine receptor *Nature*
 2013; 504 (7478): 101-13

• Novel Tripod Amphiphiles for Membrane Protein Analysis *Chemistry-A European Journal*
 2013; 19 (46): 15645-15651

* Applications of molecular replacement to G protein-coupled receptors *Acta Crystallographica Section D-Biological Crystallography*
Kruse, A. C., Manglik, A., Kobilka, B. K., Weis, W. I.
2013; 69: 2287-2292

- Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. *Nature*
 2013; 502 (7472): 575-579

- Muscarinic receptors as model targets and antitargets for structure-based ligand discovery. *Molecular pharmacology*
 2013; 84 (4): 528-540

- Muscarinic Receptors as Model Targets and Antitargets for Structure-Based Ligand Discovery
 MOLECULAR PHARMACOLOGY
 2013; 84 (4): 528-540

- Correction to "tandem facial amphiphiles for membrane protein stabilization". *Journal of the American Chemical Society*
 2013; 135 (34): 12922-?

- Quantifying and localizing interactions guiding the structural and functional properties of GPCRs
 9th European-Biophysical-Societies-Association Congress
 Zocher, M., Kawamura, S., Cheng, Z., Paul, P. S., Kobilka, B. K., Muller, D. J.
 SPRINGER.2013: S108–S108

- The role of ligands on the equilibria between functional States of a g protein-coupled receptor. *Journal of the American Chemical Society*
 2013; 135 (25): 9465-9474

- Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. *Nature*
 2013; 497 (7447): 137-141

- The Dynamic Process of beta(2)-Adrenergic Receptor Activation
 CELL
 2013; 152 (3): 532-542

- Identification of GPCR-Interacting Cytosolic Proteins Using HDL Particles and Mass Spectrometry-Based Proteomic Approach
 PLOS ONE
 2013; 8 (1)

- Glucose-Neopentyl Glycol (GNG) amphiphiles for membrane protein study
 CHEMICAL COMMUNICATIONS
 2013; 49 (23): 2287-2289

- The Structural Basis of G-Protein-Coupled Receptor Signaling (Nobel Lecture)
 ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
 Kobilka, B.
 2013; 52 (25): 6380-6388

- High-resolution crystal structure of human protease-activated receptor 1
 NATURE
 2012; 492 (7429): 387-?

- Cholesterol increases kinetic, energetic, and mechanical stability of the human beta(2)-adrenergic receptor
 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
 Zocher, M., Zhang, C., Rasmussen, S. G., Kobilka, B. K., Mueller, D. J.
 2012; 109 (50): E3463-E3472
• Role of Detergents in Conformational Exchange of a G Protein-coupled Receptor *JOURNAL OF BIOLOGICAL CHEMISTRY*
 Chung, K. Y., Kim, T. H., Manglik, A., Alves, R., Kobilka, B. K., Prosser, R. S.
 2012; 287 (43): 36305-36311

• N-Terminal T4 Lysozyme Fusion Facilitates Crystallization of a G Protein Coupled Receptor *PLOS ONE*
 Zou, Y., Weis, W. I., Kobilka, B. K.
 2012; 7 (10)

• Ligand-Specific Interactions Modulate Kinetic, Energetic, and Mechanical Properties of the Human beta(2) Adrenergic Receptor *STRUCTURE*
 Zocher, M., Fung, J. J., Kobilka, B. K., Mueller, D. J.
 2012; 20 (8): 1391-1402

• Ligand-specific interactions modulate kinetic, energetic, and mechanical properties of the human β2 adrenergic receptor. Structure
 Zocher, M., Fung, J. J., Kobilka, B. K., Müller, D. J.
 2012; 20 (8): 1391-1402

• A new era of GPCR structural and chemical biology *NATURE CHEMICAL BIOLOGY*
 Granier, S., Kobilka, B.
 2012; 8 (8): 670-673

• A New Class of Amphiphiles Bearing Rigid Hydrophobic Groups for Solubilization and Stabilization of Membrane Proteins *CHEMISTRY-A EUROPEAN JOURNAL*
 2012; 18 (31): 9485-9490

• Crystal structure of the mu-opioid receptor bound to a morphinan antagonist *NATURE*
 2012; 485 (7398): 321-U170

• Structure of the delta-opioid receptor bound to naltrindole *NATURE*
 Granier, S., Manglik, A., Kruse, A. C., Kobilka, T. S., Thian, F. S., Weis, W. I., Kobilka, B. K.
 2012; 485 (7398): 400-U171

• Structure-based drug screening for G-protein-coupled receptors *TRENDS IN PHARMACOLOGICAL SCIENCES*
 Shoichet, B. K., Kobilka, B. K.
 2012; 33 (5): 268-272

• Structure and dynamics of the M3 muscarinic acetylcholine receptor *NATURE*
 2012; 482 (7386): 552-556

• Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist *NATURE*
 2012; 482 (7386): 547-U147

• Anti-Brownian ELecktrokinetic (ABEL) Trapping of Single beta(2)-Adrenergic Receptors in the Absence and Presence of Agonist *Conference on Single Molecule Spectroscopy and Super-Resolution Imaging V*
 Bockenhauer, S., Fürstenberg, A., Yao, X. J., Kobilka, B. K., Moerner, W. E.
 SPIE-INT SOC OPTICAL ENGINEERING:2012

• Conformational dynamics of single G protein-coupled receptors in solution. *journal of physical chemistry. B*
 Bockenhauer, S., Fürstenberg, A., Yao, X. J., Kobilka, B. K., Moerner, W. E.
 2011; 115 (45): 13328-13338

• Conformational Dynamics of Single G Protein-Coupled Receptors in Solution *JOURNAL OF PHYSICAL CHEMISTRY B*
 Bockenhauer, S., Fürstenberg, A., Yao, X. J., Kobilka, B. K., Moerner, W. E.
 2011; 115 (45): 13328-13338
• Crystal structure of the beta(2) adrenergic receptor-Gs protein complex *NATURE*
 2011; 477 (7366): 549-U311

• Conformational changes in the G protein Gs induced by the beta(2) adrenergic receptor *NATURE*
 2011; 477 (7366): 611-U143

• Structural flexibility of the Gas alpha-helical domain in the beta(2)-adrenoceptor Gs complex *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 2011; 108 (38): 16086-16091

• Nanobody stabilization of G protein-coupled receptor conformational states *CURRENT OPINION IN STRUCTURAL BIOLOGY*
 Steyaert, J., Kobilka, B. K.
 2011; 21 (4): 567-572

• Structural insights into adrenergic receptor function and pharmacology *TRENDS IN PHARMACOLOGICAL SCIENCES*
 Kobilka, B. K.
 2011; 32 (4): 213-218

• Structure and function of an irreversible agonist-beta(2) adrenoceptor complex *NATURE*
 2011; 469 (7329): 236-240

• Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor *NATURE*
 2011; 469 (7329): 175-180

• Tandem Facial Amphiphiles for Membrane Protein Stabilization *JOURNAL OF THE AMERICAN CHEMICAL SOCIETY*
 2010; 132 (47): 16750-16752

• Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins *NATURE METHODS*
 2010; 7 (12): 1003-U90

• Energy Landscapes as a Tool to Integrate GPCR Structure, Dynamics, and Function *PHYSIOLOGY*
 Deupi, X., Kobilka, B. K.
 2010; 25 (5): 293-303

• International Workshop at the Nobel Forum, Karolinska Institutet on G protein-coupled receptors: finding the words to describe monomers, oligomers, and their molecular mechanisms and defining their meaning. Can a consensus be reached? *JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION*
 2010; 30 (5): 284-286

• A Device for Separated and Reversible Co-Culture of Cardiomyocytes *BIOTECHNOLOGY PROGRESS*
 2010; 26 (4): 1164-1171

• Regulation of G-Protein Coupled Receptor Traffic by an Evolutionary Conserved Hydrophobic Signal *TRAFFIC*
 Angelotti, T., Daunt, D., Shcherbakova, O. G., Kobilka, B., Hurt, C. M.
 2010; 11 (4): 560-578

• Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor *NATURE*
2010; 463 (7277): 108-U121

- Ligand-regulated oligomerization of beta(2)-adrenoceptors in a model lipid bilayer. *EMBO JOURNAL*
 2009; 28 (21): 3315-3328

 2009; 106 (23): 9501-9506

 2009; 106 (23): 9501-9506

- The structure and function of G-protein-coupled receptors. *Nature*
 Rosenbaum, D. M., Rasmussen, S. G., Kobilia, B. K.
 2009; 459 (7245): 356-363

- Structure-based discovery of beta(2)-adrenergic receptor ligands. *Proceedings of the National Academy of Sciences of the United States of America*
 2009; 106 (16): 6843-6848

 Ratnala, V. R., Kobilia, B.
 2009; 552: 67-77

- CRYSTAL STRUCTURES OF THE beta(2)-ADRENERGIC RECEPTOR. *40th Erice Course from Molecules to Medicine - Structure of Biological Macromolecules and Its Relevance in Combating New Diseases and Bioterrorism*
 SPRINGER. 2009: 217–230

- Structural insights into G-protein-coupled receptor activation. *Current opinion in structural biology*
 Weis, W. I., Kobilia, B. K.
 2008; 18 (6): 734-740

- Signaling from beta 1-and beta 2-adrenergic receptors is defined by differential interactions with PDE4
 FEDERATION AMER SOC EXP BIOL. 2008

 Kobilia, B., Schertler, G. F.
 2008; 29 (2): 79-83

- Signaling from beta(1)- and beta(2)-adrenergic receptors is defined by differential interactions with PDE4. *EMBO JOURNAL*
 2008; 27 (2): 384-393

- GPCR engineering yields high-resolution structural insights into beta(2)-adrenergic receptor function. *Science*
 2007; 318 (5854): 1266-1273

- High-resolution crystal structure of an engineered human beta(2)-adrenergic G protein-coupled receptor. *Science*
 2007; 318 (5854): 1258-1265
• Crystal structure of the human beta(2) adrenergic G-protein-coupled receptor *Nature*
 2007; 450 (7168): 383-U4

• A monoclonal antibody for G-protein-coupled receptor crystallography *Nature Methods*
 2007; 4 (11): 927-929

• N-ethylmaleimide-sensitive factor regulates beta(2) adrenoceptor trafficking and signaling in cardiomyocytes *Molecular Pharmacology*
 Wang, Y., Lauffer, B., von Zastrow, M., Kobilka, B. K., Xiang, Y.
 2007; 72 (2): 429-439

• Conformational complexity of G-protein-coupled receptors *Trends in Pharmacological Sciences*
 Kobilka, B. K., Deupi, X.
 2007; 28 (8): 397-406

• Structure and conformational changes in the C-terminal domain of the beta(2)-adrenoceptor - Insights from fluorescence resonance energy transfer studies *Journal of Biological Chemistry*
 Granier, S., Kim, S., Shafer, A. M., Ratnala, V. R., Fung, J. J., Zare, R. N., Kobilka, B.
 2007; 282 (18): 13895-13905

• A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein *Proceedings of the National Academy of Sciences of the United States of America*
 2007; 104 (18): 7682-7687

• G protein coupled receptor structure and activation *Biochimica et Biophysica Acta-Biomembranes*
 Kobilka, B. K.
 2007; 1768 (4): 794-807

• Distinct PDE4D splice variants regulate beta-adrenergic signaling in neonatal mouse cardiac myocytes *Experimental Biology 2007 Annual Meeting*
 FEDERATION AMER SOC EXP BIOL.2007: A997–A997

• Organization of beta-adrenoceptor signaling compartments by sympathetic innervation of cardiac myocytes *Journal of Cell Biology*
 Shcherbakova, O. G., Hurt, C. M., Xiang, Y., Dell’Acqua, M. L., Zhang, Q., Tsien, R. W., Kobilka, B. K.
 2007; 176 (4): 521-533

• Counting low-copy number proteins in a single cell *Science*
 Huang, B., Wu, H., Bhaya, D., Grossman, A., Granier, S., Kobilka, B. K., Zare, R. N.
 2007; 315 (5808): 81-84

• Activation of G Protein Coupled Receptors *Mechanisms and Pathways of Heterotrimeric G Protein Signaling*
 Deupi, X., Kobilka, B.
 2007; 74: 137-166

• PDZ-domain arrays for identifying components of GPCR signaling complexes *Trends in Pharmacological Sciences*
 Day, P., Kobilka, B.
 2006; 27 (10): 509-511

• PHYS 338-Quantitating low-copy-number proteins in a single cell by direct counting
 Zare, R. N., Huang, B., Wu, H., Bhaya, D., Grossman, A. R., Kobilka, B. K.
 AMER CHEMICAL SOC.2006

• Differential targeting and function of alpha(2A) and alpha(2C) adrenergic receptor subtypes in cultured sympathetic neurons *Neuropharmacology*
 Brum, P. C., Hurt, C. M., Shcherbakova, O. G., Kobilka, B., Angelotti, T.
 2006; 51 (3): 397-413

• Coupling ligand structure to specific conformational switches in the beta(2)-adrenoceptor *Nature Chemical Biology*
Yao, X., Parnot, C., Daupi, X., Ratnala, V. R., Swaminath, G., Farrens, D., Kobilka, B.
2006; 2 (8): 417-422

• Phospholipid biotinylation of polydimethylsiloxane (PDMS) for protein immobilization *LAB ON A CHIP*
 Huang, B., Wu, H. K., Kim, S., Kobilka, B. K., Zare, R. N.
 2006; 6 (3): 369-373

• Effect of targeted deletions of beta(1)- and beta(2)-adrenergic-receptor subtypes on heart rate variability *AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY*
 Ecker, P. M., Lin, C. C., Powers, J., Kobilka, B. K., Dubin, A. M., Bernstein, D.
 2006; 290 (1): H192-H199

• Differential cardioprotective/cardiotoxic effects mediated by ss-adrenergic receptor subtypes *AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY*
 Bernstein, D., Fajardo, G., Zhao, M. M., Urashima, T., Powers, J., Berry, G., Kobilka, B. K.
 2005; 289 (6): H2441-H2449

• Using synthetic lipids to stabilize purified beta(2) adrenoceptor in detergent micelles *ANALYTICAL BIOCHEMISTRY*
 Yao, Z. P., Kobilka, B.
 2005; 343 (2): 344-346

• Probing the beta(2) adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists *JOURNAL OF BIOLOGICAL CHEMISTRY*
 Swaminath, G., Despi, X., LEE, T. W., Zhu, W., Thian, F. S., Kobilka, T. S., Kobilka, B.
 2005; 280 (23): 22165-22171

• Mass spectrometric analysis of agonist effects on posttranslational modifications of the beta-2 adrenoceptor in mammalian cells *BIOCHEMISTRY*
 Trester-Zedlitz, M., Burlingame, A., Kobilka, B., von Zastrow, M.
 2005; 44 (16): 6133-6143

• Phosphodiesterase 4D is required for beta(2) adrenoceptor subtype-specific signaling in cardiac myocytes *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 Xiang, Y., Naro, F., Zoudilova, M., Jin, S. L., Conti, M., Kobilka, B.
 2005; 102 (3): 909-914

• Toward understanding GPCR dimers *NATURE STRUCTURAL & MOLECULAR BIOLOGY*
 Parnot, C., Kobilka, B.
 2004; 11 (8): 691-692

• The state of GPCR research in 2004 *NATURE REVIEWS DRUG DISCOVERY*
 2004; 3 (7): 574-626

• Agonist binding: A multistep process *MOLECULAR PHARMACOLOGY*
 Kobilka, B.
 2004; 65 (5): 1060-1062

• Protecting the myocardium: A role for the beta 2 adrenergic receptor in the heart *CRITICAL CARE MEDICINE*
 2004; 32 (4): 1041-1048

• Plasmon-waveguide resonance studies of ligand binding to the human beta(2)-adrenergic receptor *BIOCHEMISTRY*
 Devanathan, S., Yao, Z. P., Salamon, Z., Kobilka, B., Tollin, G.
 2004; 43 (11): 3280-3288

• Sequential binding of agonists to the beta(2) adrenoceptor - Kinetic evidence for intermediate conformational states *JOURNAL OF BIOLOGICAL CHEMISTRY*
 Swaminath, G., Xiang, Y., LEE, T. W., Steenhuis, J., Parnot, C., Kobilka, B. K.
 2004; 279 (1): 686-691
The PDZ-binding motif of the beta(2)-adrenoceptor is essential for physiologic signaling and trafficking in cardiac myocytes. *Proceedings of the National Academy of Sciences of the United States of America*
Xiang, Y., Kobilka, B.
2003; 100 (19): 10776-10781

Myocyte adrenoceptor signaling pathways. *Science*
Xiang, Y., Kobilka, B. K.
2003; 300 (5625): 1530-1532

Genetic manipulation of mice for analysis of beta-adrenergic receptor pharmacology and physiology. *Experimental Biology 2003 Annual Meeting*
Angelotti, T., Desai, K., Kobilka, B.
FEDERATION AMER SOC EXP BIOL. 2003: A210–A210

Identification of an allosteric binding site for Zn(2+) on the beta(2) adrenergic receptor. *Journal of Biological Chemistry*
Swaminath, G., Lee, T. W., Kobilka, B.
2003; 278 (1): 352-356

Efficient adenylyl cyclase activation by a beta(2)-adrenoceptor-G(i)alpha(2) fusion protein. *Biochemical and Biophysical Research Communications*
Seifert, R., Wenzel-Seifert, K., Arthur, J. M., Jose, P. O., Kobilka, B. K.
2002; 298 (5): 824-828

Differential cardioprotective/cardiotoxic effects of beta adrenergic receptor subtypes in isolated cardiac myocytes and fibroblasts. *American-Heart-Association Abstracts From Scientific Sessions*
Fajardo, G., Zhao, M. M., Powers, J., Kobilka, B., Bernstein, D.
LIPPINCOTT WILLIAMS & WILKINS. 2002: 123–23

Abnormal cardiac function associated with sympathetic nervous system hyperactivity in mice. *American Journal of Physiology-Heart and Circulatory Physiology*
Brum, P. C., Kosek, J., Patterson, A., Bernstein, D., Kobilka, B.
2002; 283 (5): H1838-H1845

Functional immobilization of a ligand-activated G-protein-coupled receptor. *Chembiochem*
Neumann, L., Wohland, T., Whelan, R. J., Zare, R. N., Kobilka, B. K.
2002; 3 (10): 993-998

Heterozygous alpha(2A)-adrenergic receptor mice unveil unique therapeutic benefits of partial agonists. *Proceedings of the National Academy of Sciences of the United States of America*
Tan, C. M., Wilson, M. H., MacMillan, L. B., Kobilka, B. K., Limbird, L. E.
2002; 99 (19): 12471-12476

The PDZ binding motif of the beta(1) adrenergic receptor modulates receptor trafficking and signaling in cardiac myocytes. *Journal of Biological Chemistry*
Xiang, Y., Devic, E., Kobilka, B.
2002; 277 (37): 33783-33790

Caveolar localization dictates physiologic signaling of beta(2)-adrenoeceptors in neonatal cardiac myocytes. *Journal of Biological Chemistry*
Xiang, Y., Rybin, V. O., Steinberg, S. F., Kobilka, B.
2002; 277 (37): 34280-34286

Analysis of bimolecular interactions using a miniaturized surface plasmon resonance sensor. *Analytical Chemistry*
Whelan, R. J., Wohland, T., Neumann, L., Huang, B., Kobilka, B. K., Zare, R. N.
2002; 74 (17): 4570-4576

Beta AR signaling required for diet-induced thermogenesis and obesity resistance. *Science*
Bachman, E. S., Dhillon, H., Zhang, C. Y., Cinti, S., Bianco, A. C., Kobilka, B. K., Lowell, B. B.
2002; 297 (5582): 843-845

The ectodomain of the luteinizing hormone receptor interacts with exoloop 2 to constrain the transmembrane region. *Journal of Biological Chemistry*
Nishi, S., Nakabayashi, K., Kobilka, B., Hsueh, A. J.
• Isoflurane and nociception - Spinal alpha(2A) adrenoceptors mediate antinociception while supraspinal alpha(1) adrenoceptors mediate pronociception ANESTHESIOLOGY
 Kingery, W. S., Agashe, G. S., Guo, T. Z., Sawamura, S., Davies, M. F., Clark, J. D., Kobilka, B. K., Maze, M.
 2002; 96 (2): 367-374

• Use of fluorescence spectroscopy to study conformational changes in the beta(2)-adrenoceptor G PROTEIN PATHWAYS, PT A, RECEPTORS
 Kobilka, B. K., Gether, U.
 2002; 343: 170-182

• Allosteric modulation of beta(2)-adrenergic receptor by Zn2+ MOLECULAR PHARMACOLOGY
 Swaminath, G., Steenhuis, J., Kobilka, B., LEE, T. W.
 2002; 61 (1): 65-72

• beta-adrenergic receptor subtype-specific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice MOLECULAR PHARMACOLOGY
 Devic, E., Xiang, Y., Gould, D., Kobilka, B.
 2001; 60 (3): 577-583

• A genetically engineered cell-based biosensor for functional classification of agents BIOSENSORS & BIOELECTRONICS
 Aravanis, A. M., DeBusschere, B. D., Chruscinski, A. J., Gilchrist, K. H., Kobilka, B. K., Kovacs, G. T.
 2001; 16 (7-8): 571-577

• Single-molecule spectroscopy of the beta(2) adrenergic receptor: Observation of conformational substates in a membrane protein PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
 Peleg, G., Ghanouni, P., Kobilka, B. K., Zare, R. N.
 2001; 98 (15): 8469-8474

• Functionally different agonists induce distinct conformations in the G protein coupling domain of the beta(2) adrenergic receptor JOURNAL OF BIOLOGICAL CHEMISTRY
 2001; 276 (27): 24433-24436

• Functional differences between full and partial agonists: Evidence for ligand-specific receptor conformations JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS
 Seifert, R., Wenzel-Seifert, K., Gether, U., Kobilka, B. K.
 2001; 297 (3): 1218-1226

• Agonist-induced conformational changes in the G-protein-coupling domain of the beta(2) adrenergic receptor PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
 2001; 98 (11): 5997-6002

• Antinociceptive action of nitrous oxide is mediated by stimulation of noradrenergic neurons in the brainstem and activation of alpha(2B) adrenoceptors JOURNAL OF NEUROSCIENCE
 Sawamura, S., Kingery, W. S., Davies, M. F., Agashe, G. S., Clark, J. D., Kobilka, B. K., Hashimoto, T., Maze, M.
 2000; 20 (24): 9242-9251

• Cell-type specific targeting of the alpha(2c)-adrenoceptor - Evidence for the organization of receptor microdomains during neuronal differentiation of PC12 cells JOURNAL OF BIOLOGICAL CHEMISTRY
 Hurt, C. M., Feng, F. Y., Kobilka, B.
 2000; 275 (45): 35424-35431

• Activation of the luteinizing hormone receptor following substitution of Ser-277 with selective hydrophobic residues in the ectodomain hinge region JOURNAL OF BIOLOGICAL CHEMISTRY
 Nakabayashi, K., Kudo, M., Kobilka, B., Hsueh, A. W.
Allosteric activation of the CaR by L-amino acids

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA

Kobilka, B.
2000; 97 (9): 4419-4420

The effect of pH on beta(2) adrenoceptor function - Evidence for protonation-dependent activation

JOURNAL OF BIOLOGICAL CHEMISTRY

2000; 275 (5): 3121-3127

The Effect of pH on b2 Adrenoceptor Function. Evidence for protonation-dependent activation

J Biol Chem

2000

Two functionally distinct alpha(2)-adrenergic receptors regulate sympathetic neurotransmission

NATURE

Hein, L., Altman, J. D., Kobilka, B. K.
1999; 402 (6758): 181-184

ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors

NEURON

1999; 24 (3): 715-726

Restricting the mobility of G(s)alpha: Impact on receptor and effector coupling

BIOCHEMISTRY

LEE, T. W., Seifert, R., Guan, X. M., Kobilka, B. K.
1999; 38 (42): 13801-13809

GPCR-G alpha fusion proteins: molecular analysis of receptor-G-protein coupling

TRENDS IN PHARMACOLOGICAL SCIENCES

Seifert, R., Wenzel-Seifert, K., Kobilka, B. K.
1999; 20 (9): 383-389

Effects of guanine, inosine, and xanthine nucleotides on beta(2)-adrenergic receptor/G(s) interactions: Evidence for multiple receptor conformations

MOLECULAR PHARMACOLOGY

1999; 56 (2): 348-358

Abnormal regulation of the sympathetic nervous system in alpha(2A)-adrenergic receptor knockout mice

MOLECULAR PHARMACOLOGY

1999; 56 (1): 154-161

Cardiovascular and metabolic alterations in mice lacking both beta 1-and beta 2-adrenergic receptors

JOURNAL OF BIOLOGICAL CHEMISTRY

Rohrer, D. K., Chruscinski, A., Schauble, E. H., Bernstein, D., Kobilka, B. K.
1999; 274 (24): 16701-16708

Targeted disruption of the beta 2 adrenergic receptor gene

JOURNAL OF BIOLOGICAL CHEMISTRY

1999; 274 (24): 16694-16700

Examining the efficiency of receptor/G-protein coupling with a cleavable beta(2)-adrenoceptor-G(s alpha) fusion protein

EUROPEAN JOURNAL OF BIOCHEMISTRY

Seifert, R., Wenzel-Seifert, K., Gether, U., Lam, V. T., Kobilka, B. K.
1999; 260 (3): 661-666

Cardiovascular and metabolic alterations in mice lacking both b1- and b2-adrenergic receptors

J Biol Chem

Kobilka, B.K., Rohrer, D.K., Chruscinski, A., Schauble, E.H., Bernstein, D.
1999; 274 (24): 16701

Restricting mobility of G(s)alpha relative to the beta(2)-adrenoceptor enhances adenylate cyclase activity by reducing G(s)alpha GTPase activity

BIOCHEMICAL JOURNAL

Wenzel-Seifert, K., LEE, T. W., Seifert, R., Kobilka, B. K.
1998; 334: 519-524
• G protein-coupled receptors - II. Mechanism of agonist activation
 Journal of Biological Chemistry
 Gether, U., Koblika, B. K.
 1998; 273 (29): 17979-17982

• Reconstitution of beta(2)-adrenoceptor-GTP-binding-protein interaction in Sf9 cells - High coupling efficiency in a beta(2)-adrenoceptor-G(s alpha) fusion protein
 European Journal of Biochemistry
 Seifert, R., Lee, T. W., Lam, V. T., Koblika, B. K.
 1998; 255 (2): 369-382

• Neuropeptide Y receptor 1 (NPY-Y1) expression in human heart failure and heart transplantation
 Journal of the Autonomic Nervous System
 Gullestad, L., Aass, H., Ross, H., Ueland, T., Geiran, O., KJEKSHUS, J., Simonsen, S., Fowler, M., Koblika, B.
 1998; 70 (1-2): 84-91

• Different effects of Gsalpha splice variants on beta2-adrenoreceptor-mediated signaling. The Beta2-adrenoreceptor coupled to the long splice variant of Gsalpha has properties of a constitutively active receptor.
 Journal of biological chemistry
 1998; 273 (18): 5109-5116

• Alterations in dynamic heart rate control in the beta(1)-adrenergic receptor knockout mouse
 American Journal of Physiology-Heart and Circulatory Physiology
 Rohrer, D. K., Schauble, E. H., Desai, K. H., Koblika, B. K., Bernstein, D.
 1998; 274 (4): H1184-H1193

• Different effects of G(s)alpha splice variants on beta(2)-adrenoreceptor-mediated signaling - The beta(2)-adrenoreceptor coupled to the long splice variant of G(s)alpha has properties of a constitutively active receptor
 Journal of biological chemistry
 1998; 273 (9): 5109-5116

• The developmental and physiological consequences of disrupting genes encoding beta 1 and beta 2 adrenoceptors.
 Advances in pharmacology (San Diego, Calif.)
 Rohrer, D. K., Bernstein, D., Chruscinski, A., Desai, K. H., Schauble, E., Koblika, B. K.
 1998; 42: 499-501

• G protein-coupled receptors: Functional and mechanistic insights through altered gene expression
 Physiological Reviews
 Rohrer, D. K., Koblika, B. K.
 1998; 78 (1): 35-52

• Insights from in vivo modification of adrenergic receptor gene expression
 Annual Review of Pharmacology and Toxicology
 Rohrer, D. K., Koblika, B. K.
 1998; 38: 351-373

• Site-specific fluorescence labeling of the beta(2) adrenergic receptor amino terminus
 Analytical Biochemistry
 Parola, A. L., Lin, S. S., Koblika, B. K.
 1997; 254 (1): 88-95

• Agonists induce conformational changes in transmembrane domains III and VI of the beta(2) adrenoceptor
 EMBO Journal
 1997; 16 (22): 6737-6747

• Echocardiographic evaluation of the roles of beta 1, beta 2 and beta 3 adrenergic receptors in regulating cardiovascular function in knockout mice
 Desai, K. H., Rohrer, D., Eric, S., Chruscinski, A., Koblika, B. K., Bernstein, D.
 Lippincott Williams & Wilkins. 1997: 3554–54

• Evaluation of the roles of beta 1, beta 2 and beta 3 adrenergic receptors in regulating cardiac and peripheral vascular function in knockout mice.
 Rohrer, D., Schauble, E., Chruscinski, A., Desai, K. H., Koblika, B. K., Bernstein, D.
 Lippincott Williams & Wilkins. 1997: 285–85

• Co-expression of defective luteinizing hormone receptor fragments partially reconstitutes ligand-induced signal generation
 Journal of Biological Chemistry
 Osuga, Y., Hayashi, M., Kudo, M., Conti, M., Koblika, B., Hsueh, A. J.
• Derivation of functional antagonists using N-terminal extracellular domain of gonadotropin and thyrotropin receptors. MOLECULAR ENDOCRINOLOGY
Osuga, Y., Kudo, M., Kaipia, A., Kobilka, B., Hsueh, A. J.
1997; 11 (11): 1659-1668

• Intracellular trafficking of angiotensin II and its AT(1) and AT(2) receptors: Evidence for selective sorting of receptor and ligand. MOLECULAR ENDOCRINOLOGY
Hein, L., Meinel, L., Pratt, R. E., Dzau, V. J., Kobilka, B. K.
1997; 11 (9): 1266-1277

• A novel interaction between adrenergic receptors and the alpha-subunit of eukaryotic initiation factor 2B. JOURNAL OF BIOLOGICAL CHEMISTRY
Klein, U., Ramirez, M. T., Kobilka, B. K., VONZASTROW, M.
1997; 272 (31): 19099-19102

• Adrenergic receptors - From molecular structure to in vivo function. TRENDS IN CARDIOVASCULAR MEDICINE
Hein, L., Kobilka, B. K.
1997; 7 (5): 137-145

• Overexpression of angiotensin AT(1) receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Hein, L., Stevens, M. E., Barsh, G. S., Pratt, R. E., Kobilka, B. K., Dzau, V. J.
1997; 94 (12): 6391-6396

• Subtype-specific intracellular trafficking of alpha(2)-adrenergic receptors. MOLECULAR PHARMACOLOGY
Daunt, D. A., Hurt, C., Hein, L., Kallio, J., Feng, F., Kobilka, B. K.
1997; 51 (5): 711-720

• Cardiovascular indexes in the mouse at rest and with exercise: New tools to study models of cardiac disease. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY
Desai, K. H., Sato, R., Schauble, E., Barsh, G. S., Kobilka, B. K., Bernstein, D.
1997; 272 (2): H1053-H1061

• Structural instability of a constitutively active G protein-coupled receptor - Agonist-independent activation due to conformational flexibility. JOURNAL OF BIOLOGICAL CHEMISTRY
1997; 272 (5): 2587-2590

• Ligand stabilization of the beta(2) adrenergic receptor: Effect of DTT on receptor conformation monitored by circular dichroism and fluorescence spectroscopy. BIOCHEMISTRY
Lin, S. S., Gether, U., Kobilka, B. K.
1996; 35 (46): 14445-14451

• The role of beta-1 adrenergic receptors in basal end exercise stimulated heart function: Studies on mice lacking the beta-1 adrenergic receptor gene. LIPPINCOTT WILLIAMS & WILKINS.1996: 1674–74
Rohrer, D. K., Desai, K. H., Schauble, E., Kobilka, B. K., Bernstein, D.

• Diminished contractile response to isoproterenol in beta-1 adrenergic receptor deficient mice. LIPPINCOTT WILLIAMS & WILKINS.1996: 1675–75
Desai, K. H., Rohrer, D. K., Kobilka, B. K., Bernstein, D.

• Transmembrane regions V and VI of the human luteinizing hormone receptor are required for constitutive activation by a mutation in the third intracellular loop. JOURNAL OF BIOLOGICAL CHEMISTRY
Kudo, M., Osuga, Y., Kobilka, B. K., Hsueh, A. J.
1996; 271 (37): 22470-22478

• Cardiovascular regulation in mice lacking alpha(2)-adrenergic receptor subtypes b and c. SCIENCE
Link, R. E., Desai, K., Hein, L., Stevens, M. E., Chruscinski, A., Bernstein, D., Barsh, G. S., Kobilka, B. K.
1996; 273 (5276): 803-805

• Targeted disruption of the mouse beta 1-adrenergic receptor gene: Developmental and cardiovascular effects. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
1996; 93 (14): 7375-7380

- Arrangement of transmembrane domains in adrenergic receptors - Similarity to bacteriorhodopsin JOURNAL OF BIOLOGICAL CHEMISTRY
 Mizobu, T., Maze, M., Lam, V., Suryanarayana, S., Kobilka, B. K.
 1996; 271 (5): 2387-2389

- Adrenergic receptor signal transduction Symposium on Structure and Function of 7TM Receptors
 Kobilka, B. K., Gether, U.
 MUNKSGAARD.1996: 171–179

- FLUORESCENT LABELING OF PURIFIED BETA(2) ADRENERGIC-RECEPTOR - EVIDENCE FOR LIGAND-SPECIFIC CONFORMATIONAL-CHANGES JOURNAL OF BIOLOGICAL CHEMISTRY
 Gether, U., Lin, S. S., Kobilka, B. K.
 1995; 270 (47): 28268-28275

- BEHAVIORAL AND CARDIOVASCULAR EFFECTS OF DISRUPTING THE ANGIOTENSIN-II TYPE-2 RECEPTOR GENE IN MICE NATURE
 Hein, L., Barsh, G. S., Pratt, R. E., Dzau, V. J., Kobilka, B. K.
 1995; 377 (6551): 744-747

- AMINO AND CARBOXYL-TERMINAL MODIFICATIONS TO FACILITATE THE PRODUCTION AND PURIFICATION OF A G-PROTEIN-COUPLERED RECEPTOR ANALYTICAL BIOCHEMISTRY
 Kobilka, B. K.
 1995; 231 (1): 269-271

- TARGETED INACTIVATION OF THE GENE ENCODING THE MOUSE ALPHA(2C)-ADRENOCEPTOR HOMOLOG MOLECULAR PHARMACOLOGY
 Link, R. E., Stevens, M. S., KULATUNGA, M., Scheinin, M., Barsh, G. S., Kobilka, B. K.
 1995; 48 (1): 48-55

- Adrenergic receptor signal transduction and regulation. Neuropharmacology
 Hein, L., Kobilka, B. K.
 1995; 34 (4): 357-366

- CARDIORESPIRATORY PERFORMANCE OF UNTRAINED MICE
 Sato, R., Desai, K., Kobilka, B., Barsh, G., Bernstein, D.
 NATURE PUBLISHING GROUP.1995: A33–A33

- THE CARDIOVASCULAR ROLE OF ALPHA-2B ADRENERGIC-RECEPTORS DETERMINED BY TARGETED GENE DISRUPTION
 Desai, K., Link, R., Barsh, G., Kobilka, B., Bernstein, D.
 NATURE PUBLISHING GROUP.1995: A25–A25

- GENETIC MODELS OF HUMAN VASCULAR-DISEASE CIRCULATION
 Dzau, V. J., Gibbons, G. H., Kobilka, B. K., Lawn, R. M., Pratt, R. E.
 1995; 91 (2): 521-531

- INTRACELLULAR TARGETING AND TRAFFICKING OF THROMBIN RECEPTORS - A NOVEL MECHANISM FOR RESENSITIZATION OF A G-PROTEIN-COUPLED RECEPTOR JOURNAL OF BIOLOGICAL CHEMISTRY
 Hein, L., Ishii, K., Coughlin, S. R., Kobilka, B. K.
 1994; 269 (44): 27719-27726

- MURINE CARDIORESPIRATORY PHYSIOLOGY - IN-VIVO STUDY OF GENETICALLY ALTERED MODELS
 Desai, K., Sato, R., Kobilka, B., Barsh, G., Bernstein, D.

- ANTAGONIST-DEPENDENT AND ANTAGONIST-INDEPENDENT STEPS IN THE MECHANISM OF ADRENERGIC-RECEPTOR INTERNALIZATION JOURNAL OF BIOLOGICAL CHEMISTRY
 VonZastrow, M., Kobilka, B. K.
 1994; 269 (28): 18448-18452
• PROBING THE PHYSIOLOGICAL SIGNIFICANCE OF ALPHA(2)-ADRENOCEPTOR SUBTYPE DIVERSITY IN GENETICALLY-ENGINEERED MICE
Link, R. E., Stevens, M. E., Desai, K., Scheinin, M., Bernstein, D., Barsh, G. S., Kobilka, B. K.
SLACK INC.1994: A331–A331

• RESTING AND STRESSED CARDIORESPIRATORY PARAMETERS IN THE MOUSE - NEW TOOLS FOR THE ASSESSMENT OF TRANSGENIC MODELS
Desai, K., Kobilka, B., Barsh, G., Bernstein, D.
NATURE PUBLISHING GROUP.1994: A33–A33

• THE PEPTIDE PRODUCT OF A 5' LEADER CISTRON IN THE BETA(2) ADRENERGIC-RECEPTOR MESSENGER-RNA INHIBITS RECEPTOR SYNTHESIS JOURNAL OF BIOLOGICAL CHEMISTRY
PAROLA, A. L., Kobilka, B. K.
1994; 269 (6): 4497-4505

• LINKAGE MAPPING OF ALPHA-2-ADRENERGIC RECEPTOR GENES TO MOUSE CHROMOSOME-2 AND CHROMOSOME-5 MAMMALIAN GENOME
Link, R. E., Kobilka, B. K., Barsh, G. S.
1993; 4 (11): 650-655

• PRIMARY STRUCTURE OF THE MOUSE BETA(1)-ADRENERGIC RECEPTOR GENE BIOCHIMICA ET BIOPHYSICA ACTA
Jasper, J. R., Link, R. E., Chruscinski, A. J., Kobilka, B. K., Bernstein, D.
1993; 1178 (3): 307-309

• AMINO-ACID SUBSTITUTIONS AT POSITION 312 IN THE 7TH HYDROPHOBIC SEGMENT OF THE BETA(2)-ADRENERGIC RECEPTOR MODIFY LIGAND-BINDING SPECIFICITY MOLECULAR PHARMACOLOGY
Suryanarayana, S., Kobilka, B. K.
1993; 44 (1): 111-114

• SUBTYPE-SPECIFIC DIFFERENCES IN THE INTRACELLULAR SORTING OF G-PROTEIN-COUPLLED RECEPTORS JOURNAL OF BIOLOGICAL CHEMISTRY
VONZASTROW, M., Link, R., Daunt, D., Barsh, G., Kobilka, B.
1993; 268 (2): 763-766

• ENHANCEMENT OF MEMBRANE INSERTION AND FUNCTION IN A TYPE IIIB MEMBRANE-PROTEIN FOLLOWING INTRODUCTION OF A CLEAVABLE SIGNAL PEPTIDE JOURNAL OF BIOLOGICAL CHEMISTRY
Guan, X. M., Kobilka, T. S., Kobilka, B. K.
1992; 267 (31): 21995-21998

• IDENTIFICATION OF INTRAMOLECULAR INTERACTIONS IN ADRENERGIC-RECEPTORS JOURNAL OF BIOLOGICAL CHEMISTRY
Suryanarayana, S., VONZASTROW, M., Kobilka, B. K.
1992; 267 (31): 21991-21994

• CLONING OF 2 MOUSE GENES ENCODING ALPHA-2-ADRENERGIC RECEPTOR SUBTYPES AND IDENTIFICATION OF A SINGLE AMINO-ACID IN THE MOUSE ALPHA-2-C10 HOMOLOG RESPONSIBLE FOR AN INTERSPECIES VARIATION IN ANTAGONIST BINDING MOLECULAR PHARMACOLOGY
Link, R., Daunt, D., Barsh, G., Chruscinski, A., Kobilka, B.
1992; 42 (1): 16-27

• IDENTIFICATION OF A SINGLE AMINO-ACID RESIDUE RESPONSIBLE FOR THE BINDING OF A CLASS OF BETA-ADRENERGIC-RECEPTOR ANTAGONISTS TO 5-HYDROXYTRYPTAMINE1A RECEPTORS MOLECULAR PHARMACOLOGY
Guan, X. M., Peroutka, S. J., Kobilka, B. K.
1992; 41 (4): 695-698

• LIGAND-REGULATED INTERNALIZATION AND RECYCLING OF HUMAN BETA-2-ADRENERGIC RECEPTORS BETWEEN THE PLASMA-MEMBRANE AND ENDOOSOMES CONTAINING TRANSFERRIN RECEPTORS JOURNAL OF BIOLOGICAL CHEMISTRY
VONZASTROW, M., Kobilka, B. K.
1992; 267 (5): 3530-3538

• ADRENERGIC-RECEPTORS AS MODELS FOR G PROTEIN-COUPLLED RECEPTORS ANNUAL REVIEW OF NEUROSCIENCE
Kobilka, B.
• A POINT MUTATION IN THE 7TH HYDROPHOBIC DOMAIN OF THE ALPHA-2-ADRENERGIC-RECEPTOR INCREASES ITS AFFINITY FOR A FAMILY OF BETA-RECEPTOR-ANTAGONISTS *JOURNAL OF BIOLOGICAL CHEMISTRY*
Suryanarayana, S., Daunt, D. A., VONZASTROW, M., Kobilka, B. K.
1991; 266 (23): 15488-15492

• MOLECULAR AND CELLULAR BIOLOGY OF ADRENERGIC-RECEPTORS *TRENDS IN CARDIOVASCULAR MEDICINE*
Kobilka, B.
1991; 1 (5): 189-194

• A SINGLE POINT MUTATION IN THE 7TH HYDROPHOBIC DOMAIN OF THE ALPHA-2-ADRENERGIC RECEPTOR CHANGES ANTAGONIST BINDING-SPECIFICITY TO THAT OF A BETA-RECEPTOR *104TH SESSION OF THE ASSOC OF AMERICAN PHYSICIANS*
Suryanarayana, S., Daunt, D. A., VONZASTROW, M., Kobilka, B. K.
ASSOC AMER PHYSICIANS.1991: 62–68

• THE ROLE OF CYTOSOLIC AND MEMBRANE FACTORS IN PROCESSING OF THE HUMAN BETA-2 ADRENERGIC-RECEPTOR FOLLOWING TRANSLOCATION AND GLYCOSYLATION IN A CELL-FREE SYSTEM *JOURNAL OF BIOLOGICAL CHEMISTRY*
Kobilka, B. K.
1990; 265 (13): 7610-7618

• ANALYSIS OF LIGAND-BINDING SPECIFICITY OF RECEPTOR CHIMERAS - RESPONSE *SCIENCE*
Kobilka, B. K., Kobilka, T. S., DANIELS, K. W., Regan, J. W., CARAN, M. G., Lefkowitz, R. J.

• MOLECULAR-CLONING AND EXPRESSION OF THE CDNA FOR THE HAMSTER ALPHA-1-ADRENERGIC RECEPTOR *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
Cotecchia, S., Schwinn, D. A., RANDALL, R. R., Lefkowitz, R. J., Caron, M. G., Kobilka, B. K.
1988; 85 (19): 7159-7163

• THE GENOMIC CLONE G-21 WHICH RESEMBLES A BETA-ADRENERGIC-RECEPTOR SEQUENCE ENCODES THE 5-HT1A RECEPTOR *NATURE*
FARGIN, A., Raymond, J. R., Lohse, M. J., Kobilka, B. K., Caron, M. G., Lefkowitz, R. J.
1988; 335 (6188): 358-360

• CLONING AND EXPRESSION OF A HUMAN-KIDNEY CDNA FOR AN ALPHA-2-ADRENERGIC RECEPTOR SUBTYPE *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
Regan, J. W., Kobilka, T. S., YANGFENG, T. L., Caron, M. G., Lefkowitz, R. J., Kobilka, B. K.
1988; 85 (17): 6301-6305

• HUMAN BETA-1-ADRENERGIC AND BETA-2-ADRENERGIC RECEPTORS - STRUCTURALLY AND FUNCTIONALLY RELATED RECEPTORS DERIVED FROM DISTINCT GENES *TRENDS IN NEUROSCIENCES*
Frielle, T., Kobilka, B., Lefkowitz, R. J., Caron, M. G.
1988; 11 (7): 321-324

• CHIMERIC ALPHA-2-ADRENERGIC, BETA-2-ADRENERGIC RECEPTORS - DELINEATION OF DOMAINS INVOLVED IN EFFECTOR COUPLING AND LIGAND-BINDING SPECIFICITY *SCIENCE*
Kobilka, B. K., Kobilka, T. S., Daniel, K., Regan, J. W., Caron, M. G., Lefkowitz, R. J.
1988; 240 (4857): 1310-1316

• FUNCTIONAL-ACTIVITY AND REGULATION OF HUMAN BETA-2-ADRENERGIC RECEPTORS EXPRESSED IN XENOPUS OOCYTES *JOURNAL OF BIOLOGICAL CHEMISTRY*
Kobilka, B. K., MacGregor, C., Daniel, K., Kobilka, T. S., Caron, M. G., Lefkowitz, R. J.
1987; 262 (32): 15796-15802

• CLONING OF THE CDNA FOR THE HUMAN BETA-1-ADRENERGIC RECEPTOR *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
Frielle, T., Collins, S., Daniel, K. W., Caron, M. G., Lefkowitz, R. J., Kobilka, B. K.
1987; 84 (22): 7920-7924

• CLONING, SEQUENCING, AND EXPRESSION OF THE GENE CODING FOR THE HUMAN-PLATELET ALPHA-2-ADRENERGIC RECEPTOR *SCIENCE*
Kobilka, B. K., MATSUI, H., Kobilka, T. S., YANGFENG, T. L., FRANCKE, U., Caron, M. G., Lefkowitz, R. J., Regan, J. W.
1987; 238 (4827): 650-656

- AN INTRONLESS GENE ENCODING A POTENTIAL MEMBER OF THE FAMILY OF RECEPTORS COUPLED TO GUANINE-NUCLEOTIDE REGULATORY PROTEINS NATURE
Kobilka, B. K., Frielle, T., Collins, S., YANGFENG, T., Kobilka, T. S., FRANCKE, U., Lefkowitz, R. J., Caron, M. G.
1987; 329 (6134): 75-79

- Delineation of the intronless nature of the genes for the human and hamster beta-2-adrenergic receptor and their putative promoter regions JOURNAL OF BIOLOGICAL CHEMISTRY
1987; 262 (15): 7321-7327

- CDNA for the human beta-2-adrenergic receptor - a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth-factor PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
1987; 84 (1): 46-50

- Beta-adrenergic receptors and rhodopsin - shedding new light on an old subject TRENDS IN PHARMACOLOGICAL SCIENCES
Lefkowitz, R. J., Benovic, J. L., Kobilka, B., Caron, M. G.
1986; 7 (11): 444-448

- Cloning of the gene and cDNA for mammalian beta-adrenergic-receptor and homology with rhodopsin NATURE
1986; 321 (6065): 75-79