The Mystery and Magic of Glia

We are interested in the development and function of glial cells in the mammalian central nervous system. To understand the interactions between neurons and glial cells we have developed methods to highly purify and culture retinal ganglion cells (neurons) as well as the glial cell types they interact with, oligodendrocytes and astrocytes, from the rodent optic nerve. We are using a large variety of methods to address these issues including cell purification by immunopanning, tissue culture, patch clamping, immunohistochemistry and molecular biology. Currently, we are focusing on several questions:

(1) What are the cell-cell interactions that control myelination and node of Ranvier formation?

(2) Do glial cells play a role in synapse formation and function?

(3) What are the signals that promote the survival and growth of retinal ganglion cells and can we use this knowledge to promote their survival and regeneration after injury?
(4) How do protoplasmic astrocytes, the main glial cell type in gray matter, develop and what is their function?

We have found evidence of several novel glial signals that induce the onset of myelination, the clustering of axonal sodium channels, the survival and growth of retinal ganglion cells, and the formation of synapses. We are characterizing these processes and are attempting to identify these glial-derived molecules.

Teaching

STANFORD ADVISEES

Med Scholar Project Advisor

Mariko Bennett

Postdoctoral Faculty Sponsor

Meng-meng Fu, Qingyun Li, Lu Sun

Doctoral Dissertation Reader (AC)

Grant Lin

Doctoral Dissertation Advisor (AC)

Mariko Bennett

Master's Program Advisor

Patrick Ye

Postdoctoral Research Mentor

Meng-meng Fu, Qingyun Li, Lu Sun

GRADUATE AND FELLOWSHIP PROGRAM AFFILIATIONS

- Developmental Biology (Phd Program)
- Neurosciences (Phd Program)

Publications

PUBLICATIONS

- **Diverse Requirements for Microglial Survival, Specification, and Function Revealed by Defined-Medium Cultures** *NEURON*
 2017; 94 (4): 759-764

- **DeActs: genetically encoded tools for perturbing the actin cytoskeleton in single cells** *NATURE METHODS*
 2017; 14 (5): 479-485

- **Coming out: the experience of LGBT plus people in STEM** *GENOME BIOLOGY*
 Barres, B., Montague-Hellen, B., Yoder, J.
 2017; 18

- **Loss of mu opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia** *NATURE MEDICINE*
 2017; 23 (2): 164-173

- **Neurotoxic reactive astrocytes are induced by activated microglia.** *Nature*
Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes. *Proceedings of the National Academy of Sciences of the United States of America*
Chung, W., Verghese, P. B., Chakraborty, C., Joung, J., Hyman, B. T., Ulrich, J. D., Holtzman, D. M., Barres, B. A. 2016; 113 (36): 10186-10191

Adenomatous polyposis coli regulates radial axonal sorting and myelination in the PNS. *DEVELOPMENT*

Adenomatous polyposis coli regulates radial axonal sorting and myelination in the PNS. *Development*

Complement and microglia mediate early synapse loss in Alzheimer mouse models. *SCIENCE*

Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation. *CELL*

Regeneration: Not everything is scary about a glial scar. *Nature*
Liddelow, S. A., Barres, B. A. 2016; 532 (7598): 182-183

New tools for studying microglia in the mouse and human CNS. *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*

New tools for studying microglia in the mouse and human CNS. *Proceedings of the National Academy of Sciences of the United States of America*

Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. *NEURON*

Comprehensive Identification of Long Noncoding RNAs in Purified Cell Types from the Brain Reveals Functional LncRNA in OPC Fate Determination. *PLOS GENETICS*

Glia in mammalian development and disease. *Development*
Zuchero, J. B., Barres, B. A. 2015; 142 (22): 3805-3809

Do glia drive synaptic and cognitive impairment in disease? *NATURE NEUROSCIENCE*

SnapShot: Astrocytes in Health and Disease. *Cell*
Liddelow, S., Barres, B. 2015; 162 (5): 1170-1170 e1
- Local axonal protection by WldS as revealed by conditional regulation of protein stability. *Proceedings of the National Academy of Sciences of the United States of America*
 Wang, J. T., Medress, Z. A., Vargas, M. E., Barres, B. A.
 2015; 112 (33): 10093-10100

- CNS Myelin Wrapping Is Driven by Actin Disassembly *Developmental Cell*
 2015; 34 (2): 152-167

- Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. *Nature methods*
 2015; 12 (7): 671-678

- A survey of human brain transcriptome diversity at the single cell level *Proceedings of the National Academy of Sciences of the United States of America*
 2015; 112 (23): 7285-7290

- Systematic discovery of regulated and conserved alternative exons in the mammalian brain reveals NMD modulating chromatin regulators *Proceedings of the National Academy of Sciences of the United States of America*
 2015; 112 (11): 3445-3450

- Designing and troubleshooting immunopanning protocols for purifying neural cells. *Cold Spring Harbor protocols*
 Barres, B. A.
 2014; 2014 (12): 1342-1347

- BMP Signaling in Astrocytes Downregulates EGFR to Modulate Survival and Maturation *PLOS ONE*
 Scholze, A. R., Foo, L. C., Mulinyawe, S., Barres, B. A.
 2014; 9 (10)

- An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. *Journal of Neuroscience*
 2014; 34 (36): 11929-11947

- Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders *Current Opinion in Neurobiology*
 Sloan, S. A., Barres, B. A.
 2014; 27: 75-81

- Diminished Schwann cell repair responses underlie age-associated impaired axonal regeneration. *Neuron*
 2014; 83 (2): 331-343

- Diminished schwann cell repair responses underlie age-associated impaired axonal regeneration. *Neuron*
 2014; 83 (2): 331-343
- Regulation of Intrinsic Axon Growth Ability at Retinal Ganglion Cell Growth Cones. *INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE*
 2014; 55 (7): 4369-4377

- Stepwise Recruitment of Transcellular and Paracellular Pathways Underlies Blood-Brain Barrier Breakdown in Stroke. *NEURON*
 Knowland, D., Arac, A., Sekiguchi, K. J., Hsu, M., Lutz, S. E., Perrino, J., Steinberg, G. K., Barres, B. A., Nimmerjahn, A., Agalliu, D.
 2014; 82 (3): 603-617

- Neuronal Activity Promotes Oligodendrogenesis and Adaptive Myelination in the Mammalian Brain. *SCIENCE*
 2014; 344 (6183): 487-?

- Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. *Science*
 2014; 344 (6183): 1252304-?

- Contrasting the Glial Response to Axon Injury in the Central and Peripheral Nervous Systems. *DEVELOPMENTAL CELL*
 Lutz, A. B., Barres, B. A.
 2014; 28 (1): 7-17

- BMP signaling in astrocytes downregulates EGFR to modulate survival and maturation. *PloS one*
 Scholze, A. R., Foo, L. C., Muninyaye, S., Barres, B. A.
 2014; 9 (10)

- Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. *NATURE*
 2013; 504 (7480): 394-?

- Intrinsic and extrinsic control of oligodendrocyte development. *Current opinion in neurobiology*
 Zuchero, J. B., Barres, B. A.
 2013; 23 (6): 914-920

- A smarter mouse with human astrocytes. *BioEssays*
 Zhang, Y., Barres, B. A.
 2013; 35 (10): 876-880

- A Dramatic Increase of C1q Protein in the CNS during Normal Aging. *JOURNAL OF NEUROSCIENCE*
 2013; 33 (33): 13460-13474

- MYRF Is a Membrane-Associated Transcription Factor That Autoproteolytically Cleave to Directly Activate Myelin Genes. *PLOS BIOLOGY*
 2013; 11 (8)

- Glia keep synapse distribution under wraps. *Cell*
 Clarke, L. E., Barres, B. A.
 2013; 154 (2): 267-268

- Expansion of oligodendrocyte progenitor cells following SIRT1 inactivation in the adult brain. *Nature cell biology*

- Expansion of oligodendrocyte progenitor cells following SIRT1 inactivation in the adult brain. *Nature cell biology*
• Generation of oligodendroglial cells by direct lineage conversion. Nature biotechnology
2013; 31 (5): 434-439

• Generation of oligodendroglial cells by direct lineage conversion. Nature biotechnology
2013; 31 (5): 434-439

• Emerging roles of astrocytes in neural circuit development NATURE REVIEWS NEUROSCIENCE
Clarke, L. E., Barres, B. A.
2013; 14 (5): 311-321

• Glia as primary drivers of neuropathology in TDP-43 proteinopathies. Proceedings of the National Academy of Sciences of the United States of America
Sloan, S. A., Barres, B. A.
2013; 110 (12): 4439-4440

• Microglia: Scapegoat, Saboteur, or Something Else? SCIENCE
Aguzzi, A., Barres, B. A., Bennett, M. L.
2013; 339 (6116): 156-161

• Gabapentin decreases epileptiform discharges in a chronic model of neocortical trauma NEUROBIOLOGY OF DISEASE
Li, H., Graber, K. D., Jin, S., McDonald, W., Barres, B. A., Prince, D. A.
2012; 48 (3): 429-438

• A role for C1q in normal brain aging
ELSEVIER GMBH, URBAN & FISCHER VERLAG.2012: 1133–33

• Reduced removal of synaptic terminals from axotomized spinal motoneurons in the absence of complement C3 EXPERIMENTAL NEUROLOGY
Berg, A., Zelano, J., Stephan, A., Thams, S., Barres, B. A., Pekny, M., Pekna, M., Cullheim, S.
2012; 237 (1): 8-17

• Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in mammalian spinal cord DEVELOPMENT
2012; 139 (14): 2477-2487

• Thrombospondin-4 Contributes to Spinal Sensitization and Neuropathic Pain States JOURNAL OF NEUROSCIENCE
2012; 32 (26): 8977-8987

• Astrocyte glypican 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors NATURE
2012; 486 (7403): 410-?

• The role of glial cells in synapse elimination CURRENT OPINION IN NEUROBIOLOGY
Chung, W., Barres, B. A.
2012; 22 (3): 438-445

• Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner NEURON
2012; 74 (4): 691-705

• Genomic Analysis of Reactive Astrogliosis JOURNAL OF NEUROSCIENCE
2012; 32 (18): 6391-6410

• Astrocytes and disease: a neurodevelopmental perspective GENES & DEVELOPMENT
Molofsky, A. V., Krenick, R., Ullian, E., Tsai, H., Deneen, B., Richardson, W. D., Barres, B. A., Rowitch, D. H.
2012; 26 (9): 891-907
• The T3-induced gene KLF9 regulates oligodendrocyte differentiation and myelin regeneration *MOLECULAR AND CELLULAR NEUROSCIENCE*
 Dugas, J. C., Ibrahim, A., Barres, B. A.
 2012; 50 (1): 45-57

• Axon Degeneration: Where the Wld(s) Things Are *CURRENT BIOLOGY*
 Wang, J. T., Barres, B. A.
 2012; 22 (7): R221-R223

• Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases *ONCOGENE*
 2012; 31 (15): 1884-1895

• Rhfox proteins regulate alternative splicing of neuronal sodium channel SCN8A *MOLECULAR AND CELLULAR NEUROSCIENCE*
 2012; 49 (2): 120-126

• A novel role for microglia in minimizing excitotoxicity *BMC BIOLOGY*
 Howe, M. L., Barres, B. A.
 2012; 10

• A Nogo signal coordinates the perfect match between myelin and axons *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 Scholze, A. R., Barres, B. A.
 2012; 109 (4): 1003-1004

• Axon degeneration: Molecular mechanisms of a self-destruction pathway *JOURNAL OF CELL BIOLOGY*
 Wang, J. T., Medress, Z. A., Barres, B. A.
 2012; 196 (1): 7-18

• The Complement System: An Unexpected Role in Synaptic Pruning During Development and Disease *ANNUAL REVIEW OF NEUROSCIENCE, VOL 35*
 Stephan, A. H., Barres, B. A., Stevens, B.
 2012; 35: 369-389

• Between the sheets: a molecular sieve makes myelin membranes. *Developmental cell*
 Zuchero, J. B., Barres, B. A.
 2011; 21 (3): 385-386

• Development of a Method for the Purification and Culture of Rodent Astrocytes *NEURON*
 2011; 71 (4): 632-639

• Cadherin-6 Mediates Axon-Target Matching in a Non-Image-Forming Visual Circuit *NEURON*
 2011; 71 (4): 632-639

• Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 2011; 108 (32): E440-E449

• Transgenic Mice Reveal Unexpected Diversity of On-Off Direction-Selective Retinal Ganglion Cell Subtypes and Brain Structures Involved in Motion Processing *JOURNAL OF NEUROSCIENCE*
 2011; 31 (24): 8760-8769

• The Lipid Sulphatide Is a Novel Myelin-Associated Inhibitor of CNS Axon Outgrowth *JOURNAL OF NEUROSCIENCE*
 2011; 31 (17): 6481-6492
The Down Syndrome Critical Region Regulates Retinogeniculate Refinement *JOURNAL OF NEUROSCIENCE*
2011; 31 (15): 5764-5776

Identification of a Gene Regulatory Network Necessary for the Initiation of Oligodendrocyte Differentiation *PLOS ONE*
2011; 6 (4)

Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma *JOURNAL OF CLINICAL INVESTIGATION*
2011; 121 (4): 1429-1444

Emergence of Lamina-Specific Retinal Ganglion Cell Connectivity by Axon Arbor Retraction and Synapse Elimination *JOURNAL OF NEUROSCIENCE*
2010; 30 (48): 16376-16382

Pericytes are required for blood-brain barrier integrity during embryogenesis *NATURE*
Daneman, R., Zhou, L., Kebede, A. A., Barres, B. A.
2010; 468 (7323): 562-U238

Regulation of synaptic connectivity by glia *NATURE*
Eroglu, C., Barres, B. A.
2010; 468 (7321): 223-231

The Mouse Blood-Brain Barrier Transcriptome: A New Resource for Understanding the Development and Function of Brain Endothelial Cells *PLOS ONE*
Daneman, R., Zhou, L., Agalliu, D., Cahoy, J. D., Kaushal, A., Barres, B. A.
2010; 5 (10)

Astrocyte heterogeneity: an underappreciated topic in neurobiology *CURRENT OPINION IN NEUROBIOLOGY*
Zhang, Y., Barres, B. A.
2010; 20 (5): 588-594

DICER1 AND MIR-219 ARE REQUIRED FOR NORMAL OLIGODENDROCYTE DIFFERENTIATION AND MYELINATION
WILEY-BLACKWELL. 2010: 36–36

Endogenous antibodies promote rapid myelin clearance and effective axon regeneration after nerve injury *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
2010; 107 (26): 11993-11998

Enhanced synaptic connectivity and epilepsy in C1q knockout mice *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
Chu, Y., Jin, X., Parada, I., Pesic, A., Stevens, B., Barres, B., Prince, D. A.
2010; 107 (17): 7975-7980

APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex *NATURE*
2010; 464 (7291): 1043-U109

DICER1 and *miR-219* Are Required for Normal Oligodendrocyte Differentiation and Myelination *NEURON*
2010; 65 (5): 597-611

ZFP191 is required by oligodendrocytes for CNS myelination *GENES & DEVELOPMENT*
Howing, S. Y., Auvila, R. L., Emery, B., Traka, M., Lin, W., Watkins, T., Cook, S., Bronson, R., Davison, M., Barres, B. A., Popko, B.
2010; 24 (3): 301-311
- Gabapentin Receptor alpha 2 delta-1 Is a Neuronal Thrombospondin Receptor Responsible for Excitatory CNS Synaptogenesis. *Cell*
 2009; 139 (2): 380-392

- Selective Remodeling: Refining Neural Connectivity at the Neuromuscular Junction. *PLOS Biology*
 Chung, W., Barres, B. A.
 2009; 7 (8)

- Myelin Gene Regulatory Factor Is a Critical Transcriptional Regulator Required for CNS Myelination. *Cell*
 2009; 138 (1): 172-185

- Genetic Identification of an On-Off Direction-Selective Retinal Ganglion Cell Subtype Reveals a Layer-Specific Subcortical Map of Posterior Motion. *Neuron*
 Huberman, A. D., Wei, W., Elstrott, J., Stafford, B. K., Feller, M. B., Barres, B. A.
 2009; 62 (3): 327-334

- Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. *Proceedings of the National Academy of Sciences of the United States of America*
 Daneman, R., Agalliu, D., Zhou, L., Kuhnert, F., Kuo, C. J., Barres, B. A.
 2009; 106 (2): 641-646

- Distinct Stages of Myelination Regulated by gamma-Secretase and Astrocytes in a Rapidly Myelinating CNS Coculture System. *Neuron*
 Watkins, T. A., Emery, B., Mulinyawe, S., Barres, B. A.
 2008; 60 (4): 555-569

- Unlocking CNS Cell Type Heterogeneity. *Cell*
 Emery, B., Barres, B. A.
 2008; 135 (4): 596-598

- The Mystery and Magic of Glia: A Perspective on Their Roles in Health and Disease. *Neuron*
 Barres, B. A.
 2008; 60 (3): 430-440

- Nur7 Is a Nonsense Mutation in the Mouse Aspartoacylase Gene That Causes Spongy Degeneration of the CNS. *Journal of Neuroscience*
 Traka, M., Wollmann, R. L., Cerda, S. R., Dugas, J., Barres, B. A., Popko, B.
 2008; 28 (45): 11537-11549

- Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. *Neuron*
 2008; 59 (3): 425-438

- A novel purification method for CNS projection neurons leads to the identification of brain vascular cells as a source of trophic support for corticospinal motor neurons. *Journal of Neuroscience*
 Dugas, J. C., Mandemakers, W., Rogers, M., Ibrahim, A., Daneman, R., Barres, B. A.
 2008; 28 (33): 8294-8305

- Developmental control of synaptic receptivity. *Journal of Neuroscience*
 Barker, A. J., Koch, S. M., Reed, J., Barres, B. A., Ullian, E. M.
 2008; 28 (33): 8150-8160

- NS21: Re-defined and modified supplement B27 for neuronal cultures. *Journal of Neuroscience Methods*
 Chen, Y., Stevens, B., Chang, J., Milbrandt, J., Barres, B. A., Hell, J. W.
 2008; 171 (2): 239-247

- A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. *Journal of Neuroscience*
• The classical complement cascade mediates CNS synapse elimination *CELL*
 2007; 131 (6): 1164-1178

• Disease gene candidates revealed by expression profiling of retinal ganglion cell development *JOURNAL OF NEUROSCIENCE*
 Wang, J. T., Kunzevitzky, N. J., Dugas, J. C., Cameron, M., Barres, B. A., Goldberg, J. L.
 2007; 27 (32): 8593-8603

• A crucial role for p57(Kip2) in the intracellular timer that controls oligodendrocyte differentiation *JOURNAL OF NEUROSCIENCE*
 Dugas, J. C., Ibrahim, A., Barres, B. A.
 2007; 27 (23): 6185-6196

• Why is Wallerian degeneration in the CNS so slow? *ANNUAL REVIEW OF NEUROSCIENCE*
 Vargas, M. E., Barres, B. A.
 2007; 30: 153-179

• Kinesin motors expressed in myelinating oligodendrocytes (OLs)
 Gould, R., Church, V., Mir, F., Le Breton, G., Dugas, J., Emery, B., Barres, B., Brady, S.
 CAMBRIDGE UNIV PRESS. 2007: S138–S138

• Functional genomic analysis of oligodendrocyte differentiation *JOURNAL OF NEUROSCIENCE*
 Dugas, J. C., Tai, Y. C., Speed, T. P., Ngai, J., Barres, B. A.
 2006; 26 (43): 10967-10983

• Neuronal pentraxins mediate synaptic refinement in the developing visual system *JOURNAL OF NEUROSCIENCE*
 2006; 26 (23): 6269-6281

• Mammalian inscuteable regulates spindle orientation and cell fate in the developing retina *NEURON*
 Zigman, M., Cayouette, M., Charalambous, C., Schleiffer, A., Hoeller, O., Dunican, D., McCudden, C. R., Finnberg, N., Barres, B. A., Siderovski, D. P., Knoblich, J. A.
 2005; 48 (4): 539-545

• The blood-brain barrier - Lessons from moody flies *CELL*
 Daneman, R., Barres, B. A.
 2005; 123 (1): 9-12

• Signaling between glia and neurons: focus on synaptic plasticity *CURRENT OPINION IN NEUROBIOLOGY*
 Allen, N. J., Barres, B. A.

• Axon regeneration: It's getting crowded at the gates of TROY *CURRENT BIOLOGY*
 Mandemakers, W. J., Barres, B. A.

• Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis *CELL*
 2005; 120 (3): 421-433

• Role for glia in synaptogenesis *GLIA*
 Ullian, E. M., Christopherson, K. S., Barres, B. A.
 2004; 47 (3): 209-216

• Invulnerability of retinal ganglion cells to NMDA excitotoxicity *MOLECULAR AND CELLULAR NEUROSCIENCE*
 Ullian, E. M., Barkis, W. B., Chen, S., Diamond, J. S., Barres, B. A.
 2004; 26 (4): 544-557
- NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes *NEURON*
 2004; 43 (2): 183-191

- The neurite outgrowth inhibitor Nogo A is involved in autoimmune-mediated demyelination *NATURE NEUROSCIENCE*
 Karnezis, T., Mandemakers, W., McQuilter, J. L., Zheng, B. H., Ho, P. P., Jordan, K. A., Murray, B. M., Barres, B., Tessier-Lavigne, M., Bernard, C. C.
 2004; 7 (7): 736-744

- An oligodendrocyte lineage-specific semaphorin, sema5A, inhibits axon growth by retinal ganglion cells *JOURNAL OF NEUROSCIENCE*
 Goldberg, J. L., Vargas, M. E., Wang, J. T., Mandemakers, W., Oster, S. F., Sretavan, D. W., Barres, B. A.
 2004; 24 (21): 4989-4999

- Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture *MOLECULAR AND CELLULAR NEUROSCIENCE*
 Ullian, E. M., Harris, B. T., Wu, A., Chan, J. R., Barres, B. A.
 2004; 25 (2): 241-251

- Inhibition of retinal ganglion cell regeneration by oligodendrocyte derived semaphorin 5A *J. NEUROSCI*
 Goldberg J, Vargas M, Mandemakers W, Barres BA
 2004; 24: 4989-99

- Importance of intrinsic mechanisms in cell fate decisions in the developing rat retina *NEURON*
 Cayouette, M., Barres, B. A., Raff, M.
 2003; 40 (5): 897-904

- What is a glial cell? *GLIA*
 Barres, B. A.
 2003; 43 (1): 4-5

- Schwann cells strongly promote synapse formation by spinal motor neurons in culture.* 79th Annual Meeting of the American-Association-of-Neuropathologists*
 Harris, B. T., Wu, A., Ullian, E., Barres, B. A.
 LIPPINCOTT WILLIAMS & WILKINS.2003: 540–40

- Nerve regeneration: Regrowth stumped by shared receptor *CURRENT BIOLOGY*
 Watkins, T. A., Barres, B. A.

- Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells *SCIENCE*
 Goldberg, J. L., Klassen, M. P., Hua, Y., Barres, B. A.
 2002; 296 (5574): 1860-1864

- Retinal ganglion cells do not extend axons by default: Promotion by neurotrophic signaling and electrical activity *NEURON*
 Goldberg, J. L., Espinosa, J. S., Xu, Y. F., Davidson, N., Kovacs, G. T., Barres, B. A.
 2002; 33 (5): 689-702

- An Irreversible, Neonatal Switch from Axonal to Dendritic Growth in the Developing CNS. *SCIENCE*
 Goldberg, J., R. Daneman, Y. Hua, BA Barres
 2002; 296: 1860-4

- Neurobiology - Cholesterol - Making or breaking the synapse *SCIENCE*
 Barres, B. A., Smith, S. J.
 2001; 294 (5545): 1296-1297

- Differential control of clustering of the sodium channels Na(v)1.2 and Na(v)1.6 at developing CNS nodes of ranvier *NEURON*
 2001; 30 (1): 105-119

- A role for the helix-loop-helix protein Id2 in the control of oligodendrocyte development *NEURON*
 Wang, S. L., Sdrulla, A., Johnson, J. E., Yokota, Y., Barres, B. A.
 2001; 29 (3): 603-614
• Induction of astrocyte differentiation by endothelial cells *JOURNAL OF NEUROSCIENCE*
 Mi, H. Y., Haeberle, H., Barres, B. A.
 2001; 21 (5): 1538-1547

• Control of synapse number by glia *SCIENCE*
 Ullian, E. M., Sapperstein, S. K., Christopherson, K. S., Barres, B. A.
 2001; 291 (5504): 657-661

• Neuronal and glial cell biology *CURRENT OPINION IN NEUROBIOLOGY*
 Barres, B. A., Barde, Y. A.
 2000; 10 (5): 642-648

• Up a notch: Instructing gliogenesis *NEURON*
 Wang, S. L., Barres, B. A.
 2000; 27 (2): 197-200

• The relationship between neuronal survival and regeneration *ANNUAL REVIEW OF NEUROSCIENCE*
 Goldberg, J. L., Barres, B. A.
 2000; 23: 579-612

• Axonal control of oligodendrocyte development *JOURNAL OF CELL BIOLOGY*
 Barres, B. A., RAFF, M. C.
 1999; 147 (6): 1123-1128

• Astrocytes induce oligodendrocyte processes to align with and adhere to axons *MOLECULAR AND CELLULAR NEUROSCIENCE*
 Meyer-Franke, A., Shen, S. L., Barres, B. A.
 1999; 14 (4-5): 385-397

• A new role for glia: Generation of neurons! *CELL*
 Barres, B. A.
 1999; 97 (6): 667-670

• Purification and characterization of astrocyte precursor cells in the developing rat optic nerve *JOURNAL OF NEUROSCIENCE*
 Mi, H. Y., Barres, B. A.
 1999; 19 (3): 1049-1061

• The Schwann song of the glia-less synapse *NEURON*
 Ullian, E. M., Barres, T. A.
 1998; 21 (4): 651-652

• Cyclic AMP elevation is sufficient to promote the survival of spinal motor neurons in vitro *JOURNAL OF NEUROSCIENCE*
 Hanson, M. G., Shen, S. L., Wiemelt, A. P., McMorris, F. A., Barres, B. A.
 1998; 18 (18): 7361-7371

• Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve *JOURNAL OF NEUROSCIENCE*
 Shi, J. Y., Marinovich, A., Barres, B. A.
 1998; 18 (12): 4627-4636

• Neural regeneration: Extending axons from bench to brain *CURRENT BIOLOGY*
 Goldberg, J. L., Barres, B. A.
 1998; 8 (9): R310-R312

• Retinal development: Communication helps you see the light *CURRENT BIOLOGY*
 WechslerReya, R. J., Barres, B. A.
 1997; 7 (7): R433-R436

• Neuron-glial interactions in the developing rat optic nerve *20th International Symposium on Molecular Basis of Axonal Growth and Nerve Pattern Formation*
 Barres, B. A.
 KARGER.1997: 89–105
* Hepatocyte growth factor scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. *NEURON*
Ebens, A., Brose, K., Leonardo, E. D., Hanson, M. G., Bladt, F., Birchmeier, C., Barres, B. A., TESSIER-LAVIGNE, M.
1996; 17 (6): 1157-1172

* New views on synapse-glia interactions. *CURRENT OPINION IN NEUROBIOLOGY*
Pfrieger, F. W., Barres, B. A.
1996; 6 (5): 615-621

* Ciliary Neurotrophic Factor Enhances the Rate of Oligodendrocyte Generation. *Molecular and cellular neurosciences*
BARRES, Burne, Holtmann, Thoenen, Sendtner, Raff
1996; 8 (2/3): 146-156

* Ciliary neurotrophic factor enhances the rate of oligodendrocyte generation. *MOLECULAR AND CELLULAR NEUROSCIENCE*
Barres, B. A., BURNE, J. F., Holtmann, B., THOENEN, H., Sendtner, M., RAFF, M. C.
1996; 8 (2-3): 146-156

* WHAT THE FLYS GLIA TELL THE FLYS BRAIN. *CELL*
Pfrieger, F. W., Barres, B. A.
1995; 83 (5): 671-674

* CHARACTERIZATION OF THE SIGNALING INTERACTIONS THAT PROMOTE THE SURVIVAL AND GROWTH OF DEVELOPING RETINAL GANGLION-CELLS IN CULTURE. *NEURON*
MEYERFRANKE, A., Kaplan, M. R., Pfrieger, F. W., Barres, B. A.

* AXON MYELINATION - MYELINATION WITHOUT MYELIN-ASSOCIATED GLYCOPROTEIN. *CURRENT BIOLOGY*
MEYERFRANKE, A., Barres, B.
1994; 4 (9): 847-850

* PROGRAMMED CELL-DEATH AND THE CONTROL OF CELL-SURVIVAL. *PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES*
RAFF, M. C., Barres, B. A., BURNE, J. F., COLES, H. S., Ishizaki, Y., Jacobson, M. D.
1994; 345 (1313): 265-268

* A NOVEL ROLE FOR THYROID-HORMONE, GLUCOCORTICOIDS AND RETINOIC ACID IN TIMING OLIGODENDROCYTE DEVELOPMENT. *DEVELOPMENT*
Barres, B. A., Lazar, M. A., RAFF, M. C.
1994; 120 (5): 1097-1108

* CONTROL OF OLIGODENDROCYTE NUMBER IN THE DEVELOPING RAT OPTIC-NERVE. *NEURON*
Barres, B. A., RAFF, M. C.
1994; 12 (5): 935-942

* PROGRAMMED CELL-DEATH AND THE CONTROL OF CELL-SURVIVAL. - LESSONS FROM THE NERVOUS-SYSTEM. *SCIENCE*
RAFF, M. C., Barres, B. A., BURNE, J. F., COLES, H. S., Ishizaki, Y., Jacobson, M. D.
1993; 262 (5134): 695-700

* DOES OLIGODENDROCYTE SURVIVAL DEPEND ON AXONS. *CURRENT BIOLOGY*
Barres, B. A., Jacobson, M. D., Schmid, R., Sendtner, M., RAFF, M. C.
1993; 3 (8): 489-497

* PROLIFERATION OF OLIGODENDROCYTE PRECURSOR CELLS DEPENDS ON ELECTRICAL-ACTIVITY IN AXONS. *NATURE*
Barres, B. A., RAFF, M. C.
1993; 361 (6409): 258-260

* CELL-DEATH IN THE OLIGODENDROCYTE LINEAGE. *JOURNAL OF NEUROBIOLOGY*
1992; 23 (9): 1221-1230

* CELL-DEATH AND CONTROL OF CELL-SURVIVAL IN THE OLIGODENDROCYTE LINEAGE. *CELL*