Insulin is one of the primary regulators of rapid anabolic responses in the body. Defects in the synthesis and/or ability of cells to respond to insulin results in the condition known as diabetes mellitus. To better design methods of treatment for this disorder, we have been focusing our research on how insulin elicits its various biological responses. We are utilizing the techniques of immunology, molecular biology, and biochemistry to study:

(i) How does the insulin receptor initiate the response to insulin? Like various oncogenes, the insulin receptor has an intrinsic enzymatic activity; it phosphorylates various proteins on tyrosine residues. This enzymatic activity has been found to be critical for insulin to elicit its various responses. The receptor kinase tyrosine phosphorylates various endogenous proteins. These proteins bind and activate a lipid kinase called a phosphatidylinositol 3-kinase. This kinase activates a serine/threonine kinase called Akt or PKB. A major focus is to understand the role of this serine kinase in eliciting various biological responses. Novel substrates for this kinase are being isolated and genes regulated by this kinase are being identified.

(ii) How is the response to insulin modulated? Cells from non-insulin dependent diabetics (the most common form of diabetes, ~5 million in the US) exhibit a profound resistance to insulin. This resistance can be mimicked in cell cultures by stimulating the serine phosphorylation of the insulin receptor and/or various substrates of the insulin receptor tyrosine kinase. We are therefore exploring the hypothesis that excessive serine phosphorylation of the insulin receptor and/or insulin receptor substrates in these individuals causes this insulin resistance. We are determining the serine residues phosphorylated in the receptor and insulin receptor substrates, the enzymes response for this phosphorylation, and the consequences of these phosphorylations;

(iii) How is the response to insulin terminated? We have purified to homogeneity a protease with a high specificity for insulin and capable of cleaving insulin at the same sites as those identified in insulin cleaved in intact cells. We have also isolated the cDNA which encodes for this protease and are overexpressing this protease in mammalian cells to determine whether it will affect the termination of the insulin response; and

(iv) What is the relationship of the insulin receptor to the receptor for other insulin-like growth factors? We are comparing the abilities of these different receptors to stimulate various biological responses.
Teaching

GRADUATE AND FELLOWSHIP PROGRAM AFFILIATIONS

- Cancer Biology (Phd Program)
- Chemical and Systems Biology (Phd Program)

Publications

PUBLICATIONS

- Leucine-stimulated mTOR signaling is partly attenuated in skeletal muscle of chronically uremic rats. *American Journal of Physiology-Endocrinology and Metabolism*
 Chen, Y., Sood, S., McIntire, K., Roth, R., Rabkin, R.
 2011; 301 (5): E873-E881

- Increased workload fully activates the blunted IRS-1/PI3-kinase/Akt signaling pathway in atrophied uremic muscle. *Kidney International*
 Chen, Y., Sood, S., Biada, J., Roth, R., Rabkin, R.
 2008; 73 (7): 848-855

- PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. *Journal of Biological Chemistry*
 Wang, L., Harris, T. E., Roth, R. A., Lawrence, J. C.
 2007; 282 (27): 20036-20044

- Protein kinase B/Akt phosphorylation of PDE3A and its role in mammalian oocyte maturation. *EMBO Journal*
 Han, S. J., Vaccari, S., Nedachi, T., Andersen, C. B., Kovacina, K. S., Roth, R. A., Conti, M.
 2006; 25 (24): 5716-5725

- PKC delta-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function. *Biochemical and Biophysical Research Communications*
 Greene, M. W., Ruhoff, M. S., Roth, R. A., Kim, J., Quon, M. J., Krause, J. A.
 2006; 349 (3): 976-986

- On the mechanism for neomycin reversal of wortmannin inhibition of insulin stimulation of glucose uptake. *Journal of Biological Chemistry*
 Shimaya, A., Kovacina, K. S., Roth, R. A.
 2004; 279 (53): 55277-55282

- Modulation of human insulin receptor substrate-1 tyrosine phosphorylation by protein kinase C delta. *Biochemical Journal*
 Greene, M. W., Morrice, N., Garofalo, R. S., Roth, R. A.
 2004; 378: 105-116

- Akt promotes increased mammalian cell size by stimulating protein synthesis and inhibiting protein degradation. *American Journal of Physiology-Endocrinology and Metabolism*
 Faridi, J., Fawcett, J., Wang, L. H., Roth, R. A.
 2003; 285 (5): E964-E972

- Inorganic polyphosphate stimulates mammalian TOR, a kinase involved in the proliferation of mammary cancer cells. *Proceedings of the National Academy of Sciences of the United States of America*
 Wang, L. H., Fraley, C. D., Faridi, J., Kornberg, A., Roth, R. A.
 2003; 100 (20): 11249-11254

- Expression of constitutively active Akt-3 in MCF-7 breast cancer cells reverses the estrogen and tamoxifen responsivity of these cells in vivo. *Clinical Cancer Research*
 Faridi, J., Wang, L. H., Endemann, G., Roth, R. A.
 2003; 9 (8): 2933-2939

- Gene expression profiling in prostate cancer cells with Akt activation reveals Fra-1 as an Akt-inducible gene. *Molecular Cancer Research*
 Tiwari, G., Sakaue, H., Pollack, J. R., Roth, R. A.
 2003; 1 (6): 475-484
• Identification of a proline-rich Akt substrate as a 14-3-3 binding partner *JOURNAL OF BIOLOGICAL CHEMISTRY*
 Kovacina, K. S., Park, G. Y., Bae, S. S., Guzzetta, A. W., Schaefer, E., Birnbaum, M. J., Roth, R. A.
 2003; 278 (12): 10189-10194

• Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by serine 312 phosphorylation *JOURNAL OF BIOLOGICAL CHEMISTRY*
 Greene, M. W., Sakaue, H., Wang, L. H., Alessi, D. R., Roth, R. A.
 2003; 278 (10): 8199-8211

• Akt modulates STAT3-mediated gene expression through a FKHR (FOXO1a)-dependent mechanism *JOURNAL OF BIOLOGICAL CHEMISTRY*
 2003; 278 (7): 5242-5249

• Protein kinase B/Akt is essential for the insulin- but not progesterone-stimulated resumption of meiosis in Xenopus oocytes *BIOCHEMICAL JOURNAL*
 Andersen, C. B., Sakaue, H., Nedachi, T., Kovacina, K. S., CLAYBERGER, C., Conti, M., Roth, R. A.
 2003; 369: 227-238

• Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer's disease is associated with the apolipoprotein E-epsilon 4 allele *AMERICAN JOURNAL OF PATHOLOGY*
 2003; 162 (1): 313-319

• Regulation of the forkhead transcription factor FKHR (FOXO1a) by glucose starvation and AICAR, an activator of AMP-activated protein kinase *ENDOCRINOLOGY*
 2002; 143 (8): 3183-3186

• Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer's disease is associated with the apolipoprotein E-epsilon 4 allele
 McMillan, P., Cook, D., Leverenz, J., Kulstad, J., Schellenberg, G., Craft, S., Ericksen, S., Jin, L. W., Roth, R., Kovacina, K.
 ELSEVIER SCIENCE INC.2002: S400–S400

• Concentration-dependent stimulatory and inhibitory effect of troglitazone on insulin-induced fatty acid synthase expression and protein kinase B activity in 3T3-L1 adipocytes *NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY*
 Barthel, A., Kruger, K. D., Roth, R. A., Joost, H. G.
 2002; 365 (4): 290-295

• Ligand-dependent interaction of estrogen receptor-alpha with members of the forkhead transcription factor family *JOURNAL OF BIOLOGICAL CHEMISTRY*
 2001; 276 (36): 33554-33560

• Differential regulation of endogenous glucose-6-phosphatase and phosphoenolpyruvate carboxykinase gene expression by the forkhead transcription factor FKHR in H4IIE-hepatoma cells *BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS*
 2001; 285 (4): 897-902

• Regulation of FRTL-5 thyroid cell growth by phosphatidylinositol (OH) 3 kinase-dependent Akt-mediated signaling *THYROID*
 2001; 11 (4): 339-351

• The insulin receptor substrate (IRS)-1 pleckstrin homology domain functions in downstream signaling *JOURNAL OF BIOLOGICAL CHEMISTRY*
 Vainshtein, I., Kovacina, K. S., Roth, R. A.
 2001; 276 (11): 8073-8078

• Oncogenic transformation of cells by a conditionally active form of the protein kinase Akt/PKB *CELL GROWTH & DIFFERENTIATION*
 Mirza, A. M., Kohn, A. D., Roth, R. A., McMahon, M.
 2000; 11 (6): 279-292

• The MMAC1 tumor suppressor phosphatase inhibits phospholipase C and integrin-linked kinase-activity *ONCOGENE*
 Morimoto, A. M., Tomlinson, M. G., Nakatani, K., Bolen, J. B., Roth, R. A., Herbst, R.
Hereregulin regulation of Akt/protein kinase B in breast cancer cells *BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS*
Liu, W., Li, J. P., Roth, R. A.
1999; 261 (3): 897-903

Up-regulation of Akt3 in estrogen receptor-deficient breast cancers and androgen-independent prostate cancer lines *JOURNAL OF BIOLOGICAL CHEMISTRY*
Nakatani, K., Thompson, D. A., Barthel, A., Sakaue, H., Liu, W., Weigel, R. J., Roth, R. A.
1999; 274 (31): 21528-21532

Regulation of GLUT1 gene transcription by the serine threonine kinase Akt1 *JOURNAL OF BIOLOGICAL CHEMISTRY*
1999; 274 (29): 20281-20286

The role of glycogen synthase kinase 3 beta in insulin-stimulated glucose metabolism *JOURNAL OF BIOLOGICAL CHEMISTRY*
Summers, S. A., Kao, A. W., Kohn, A. D., Backus, G. S., Roth, R. A., Pessin, J. E., Birnbaum, M. J.
1999; 274 (25): 17934-17940

Comparison of the signaling abilities of the cytoplasmic domains of the insulin receptor and the insulin receptor-related receptor in 3T3-L1 adipocytes *ENDOCRINOLOGY*
Dandekar, A. A., Wallach, B. J., Barthel, A., Roth, R. A.
1998; 139 (8): 3578-3584

Protein kinase B/akt and Rab5 mediate ras activation of endocytosis *JOURNAL OF BIOLOGICAL CHEMISTRY*
Barbieri, M. A., Kohn, A. D., Roth, R. A., Stahl, P. D.
1998; 273 (31): 19367-19370

Protein kinase B/Akt induces resumption of meiosis in Xenopus oocytes *JOURNAL OF BIOLOGICAL CHEMISTRY*
Andersen, C. B., Roth, R. A., Conti, M.
1998; 273 (30): 18705-18708

Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
Scott, P. H., Brunn, G. J., Kohn, A. D., Roth, R. A., Lawrence, J. C.
1998; 95 (13): 7772-7777

Construction and characterization of a conditionally active version of the serine/threonine kinase Akt *JOURNAL OF BIOLOGICAL CHEMISTRY*
1998; 273 (19): 11937-11943

Binding of SH2 containing proteins to the insulin receptor: A new way for modulating insulin signalling *MOLECULAR AND CELLULAR BIOCHEMISTRY*
Liu, F., Roth, R. A.
1998; 182 (1-2): 73-78

Development of an assay for bioactive insulin *ANALYTICAL BIOCHEMISTRY*
Richard Roth
http://cap.stanford.edu/profiles/Richard_Roth/

Okada, Y., Yokono, K., Katsuta, A., Yoshida, M., Morita, S., Irino, T., Baba, S., Roth, R. A., Shii, K.
1998; 257 (2): 134-138

- **Protein kinase C modulates the insulin-stimulated increase in Akt1 and Akt3 activity in 3T3-L1 adipocytes** _BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS_
 Barthel, A., Nakatani, K., Dandekar, A. A., Roth, R. A.
 1998; 243 (2): 509-513

- **Disruption of a putative SH3 domain and the proline-rich motifs in the 53-kDa substrate of the insulin receptor kinase does not alter its subcellular localization or ability to serve as a substrate** _JOURNAL OF CELLULAR BIOCHEMISTRY_
 Yeh, T. C., Li, W. L., Keller, G. A., Roth, R. A.
 1998; 68 (2): 139-150

- **Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase** _JOURNAL OF BIOLOGICAL CHEMISTRY_
 Barthel, A., Nakatani, K., Dandekar, A. A., Roth, R. A.
 1998; 243 (2): 509-513

- **Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612** _BIOCHEMISTRY_
 DeFea, K., Roth, R. A.
 1997; 272 (50): 31400-31406

- **A constitutively active version of the Ser/Thr kinase Akt induces production of the ob gene product, leptin, in 3T3-L1 adipocytes** _ENDOCRINOLOGY_
 Yeh, T. C., Ogawa, W., Danielsen, A. G., Roth, R. A.
 1996; 271 (6): 2921-2928

- **A NONRADIOACTIVE ASSAY FOR THE INSULIN-RECEPTOR TYROSINE KINASE - USE IN MONITORING RECEPTOR KINASE-ACTIVITY AFTER ACTIVATION OF OVEREXPRESSED PROTEIN-KINASE C-ALPHA AND HIGH GLUCOSE TREATMENT** _ANALYTICAL BIOCHEMISTRY_
 Boge, A., Roth, R. A.
 1995; 231 (2): 323-332

- **GRB-IR - A SH2-DOMAIN-CONTAINING PROTEIN THAT BINDS TO THE INSULIN-RECEPTOR AND INHIBITS ITS FUNCTION** _PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA_
 Liu, F., Roth, R. A.
 1995; 92 (22): 10287-10291
• ACTIVATION OF PROTEIN-KINASE C-ALPHA INHIBITS SIGNALING BY MEMBERS OF THE INSULIN-RECEPTOR FAMILY *JOURNAL OF BIOLOGICAL CHEMISTRY*
Danielsen, A. G., Liu, F., Hosomi, Y., Shii, K., Roth, R. A.
1995; 270 (37): 21600-21605

• INSULIN STIMULATES THE KINASE-ACTIVITY OF RAC-PK, A PLECKSTRIN HOMOLOGY DOMAIN-CONTAINING SER/THR KINASE *EMBO JOURNAL*
Kohn, A. D., Kovacina, K. S., Roth, R. A.
1995; 14 (17): 4288-4295

• COMPARISON OF THE SIGNALING ABILITIES OF THE DROSOPHILA AND HUMAN INSULIN-RECEPTORS IN MAMMALIAN-CELLS *BIOCHEMISTRY*
Yamaguchi, T., Fernandez, R., Roth, R. A.
1995; 34 (15): 4962-4968

• ACTIVATION OF PROTEIN-KINASE-C STIMULATES THE TYROSINE PHOSPHORYLATION AND GUANOSINE TRIPHOSPHATASE-ACTIVATING PROTEIN ASSOCIATION OF P60 IN RAT HEPATOMA-CELLS *ENDOCRINOLOGY*
Ogawa, W., Hosomi, Y., Roth, R. A.
1995; 136 (2): 476-481

• CHARACTERIZATION OF THE ENDOGENOUS INSULIN RECEPTOR-RELATED RECEPTOR IN NEUROBLASTOMAS *JOURNAL OF BIOLOGICAL CHEMISTRY*
Kristina, S., Roth, R. A.
1995; 270 (4): 1881-1887

• INSULYSIN AND PTrILYSIN - INSULIN-DEGRADING ENZYMES OF MAMMALS AND BACTERIA *PROTEOLYTIC ENZYMES: ASPARTIC AND METALLO PEPTIDASES*
Becker, A. B., Roth, R. A.
1995; 248: 693-703

• CHARACTERIZATION OF A PROTEIN WHICH BINDS PHOSPHATIDYLINOSITOL 3,4,5-TRISPHOSPHATE AND 4,5-BISPHOSPHATE *BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH*
Ogawa, W., Roth, R. A.
1994; 1224 (3): 533-540

• EVIDENCE FOR 2 DISTINCT 60-KILODALTON SUBSTRATES OF THE SRC TYROSINE KINASE *JOURNAL OF BIOLOGICAL CHEMISTRY*
Ogawa, W., Hosomi, Y., Shii, K., Roth, R. A.
1994; 269 (47): 29602-29608

• INSULIN-RECEPTOR SIGNALING IN MADIN-DARBY CANINE KIDNEY-CELLS OVEREXPRESSING THE HUMAN INSULIN-RECEPTOR *DIABETES*
Yeh, T. C., Roth, R. A.
1994; 43 (11): 1297-1303

• ACCURATE AND EFFICIENT CLEAVAGE OF THE HUMAN INSULIN PRORECEPTOR BY THE HUMAN PROPROTEIN-PROCESSING PROTEASE FURIN - CHARACTERIZATION AND KINETIC-PARAMETERS USING THE PURIFIED, SECRETED SOLUBLE PROTEASE EXPRESSED BY A RECOMBINANT BACULOVIRUS *JOURNAL OF BIOLOGICAL CHEMISTRY*
BRAVO, D. A., Gleason, J. B., Sanchez, R. I., Roth, R. A., Fuller, R. S.
1994; 269 (41): 25830-25837

• IDENTIFICATION OF SERINES-1035/1037 IN THE KINASE DOMAIN OF THE INSULIN-RECEPTOR AS PROTEIN-KINASE C-ALPHA MEDIATED PHOSPHORYLATION SITES *FEBS LETTERS*
Liu, F., Roth, R. A.
1994; 352 (3): 389-392

• SELECTIVE COEXPRESSION OF INSULIN RECEPTOR-RELATED RECEPTOR (IRR) AND TRK IN NGF-SENSITIVE NEURONS *JOURNAL OF NEUROSCIENCE*
Reinhardt, R. R., Chin, E., Zhang, B., Roth, R. A., Bondy, C. A.
1994; 14 (8): 4674-4683

• INSULIN-STIMULATED TYROSINE PHOSPHORYLATION OF PROTEIN-KINASE C-ALPHA - EVIDENCE FOR DIRECT INTERACTION OF THE INSULIN-RECEPTOR AND PROTEIN-KINASE-C IN CELLS *BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS*
Liu, F., Roth, R. A.
1994; 200 (3): 1570-1577

- CHARACTERIZATION OF A 60-KILODALTON SUBSTRATE OF THE INSULIN-RECEPTOR KINASE JOURNAL OF BIOLOGICAL CHEMISTRY
 Hosomi, Y., Shiit, K., Ogawa, W., Matsuba, H., Yoshida, M., Okada, Y., Yokono, K., Kasuga, M., Baba, S., Roth, R. A.
 1994; 269 (15): 11498-11502

- IDENTIFICATION OF SERINES-967/968 IN THE JUXTAMEMBRANE REGION OF THE INSULIN-RECEPTOR AS INSULIN-STIMULATED PHOSPHORYLATION SITES BIOCHEMICAL JOURNAL
 Liu, F., Roth, R. A.
 1994; 298: 471-477

- CELLULAR-DISTRIBUTION OF INSULIN-DEGRADING ENZYME GENE-EXPRESSION - COMPARISON WITH INSULIN AND INSULIN-LIKE GROWTH-FACTOR RECEPTORS JOURNAL OF CLINICAL INVESTIGATION
 Bondy, C. A., Zhou, J., Chin, E., Reinhardt, R. R., Ding, L., Roth, R. A.
 1994; 93 (3): 966-973

- Insulin-like growth factor receptors: recent developments and new methodologies. Growth regulation
 Roth, R. A., Kiess, W.
 1994; 4: 31-38

- ACTIVATION OF PROTEIN-KINASE C-ALPHA INHIBITS INSULIN-STIMULATED TYROSINE PHOSPHORYLATION OF INSULIN-RECEPTOR SUBSTRATE-1 MOLECULAR ENDOCRINOLOGY
 Chin, J. E., Liu, F., Roth, R. A.
 1994; 8 (1): 51-58

- BIOCHEMICAL-MECHANISMS OF INSULIN-RESISTANCE XIth Annual Lilly International Symposium on Endocrinology and Development - Insulin, IGFs and Growth Hormone: From Basic Research to Novel Clinical Applications
 Roth, R. A., Liu, F., Chin, J. E.
 KARGER.1994: 51–55

- INSULIN RECEPTOR-RELATED RECEPTOR MESSENGER-RIBONUCLEIC-ACID IS FOCALLY EXPRESSED IN SYMPATHETIC AND SENSORY NEURONS AND RENAL DISTAL TUBULE CELLS ENDOCRINOLOGY
 Reinhardt, R. R., Chin, E., Zhang, B., Roth, R. A., Bondy, C. A.
 1993; 133 (1): 3-10

- IDENTIFICATION OF GLUTAMATE-169 AS THE 3RD ZINC-BINDING RESIDUE IN PROTEINASE-111, A MEMBER OF THE FAMILY OF INSULIN-DEGRADING ENZYMES BIOCHEMICAL JOURNAL
 Becker, A. B., Roth, R. A.
 1993; 292: 137-142

- IDENTIFICATION OF SHC AS A SUBSTRATE OF THE INSULIN-RECEPTOR KINASE DISTINCT FROM THE GAP-ASSOCIATED 62 KDA TYROSINE PHOSPHOPROTEIN BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
 Kovacina, K. S., Roth, R. A.
 1993; 192 (3): 1303-1311

- OVEREXPRESSION OF PROTEIN-KINASE-C ISOENZYMES-ALPHA, BETA-I, GAMMA, AND EPSILON IN CELLS OVEREXPRESSING THE INSULIN-RECEPTOR - EFFECTS ON RECEPTOR PHOSPHORYLATION AND SIGNALING JOURNAL OF BIOLOGICAL CHEMISTRY
 Chin, J. E., Dickens, M., Tavare, J. M., Roth, R. A.
 1993; 268 (9): 6338-6347

- THE INSULIN-RECEPTOR FAMILY 4th International Symposium on Insulin, IGFs, and Their Receptors
 Seta, K. A., Kovacina, K. S., Roth, R. A.
 PLENUM PRESS DIV PLENUM PUBLISHING CORP.1993: 113–124

- CHARACTERIZATION OF INSULIN-STIMULATED PROTEIN SERINE THREONINE KINASES IN CHO CELLS EXPRESSING HUMAN INSULIN-RECEPTORS WITH POINT AND DELETION MUTATIONS BIOCHEMICAL JOURNAL
 Dickens, M., Chin, J. E., Roth, R. A., Ellis, L., Denton, R. M., Tavare, J. M.
 1992; 287: 201-209

- THE INSULIN RECEPTOR-RELATED RECEPTOR - TISSUE expression, LIGAND-BINDING SPECIFICITY, AND SIGNALING CAPABILITIES JOURNAL OF BIOLOGICAL CHEMISTRY
Zhang, B., Roth, R. A.
1992; 267 (26): 18320-18328

- **A PANEL OF MONOCLONAL-ANTIBODIES FOR THE TYPE-I INSULIN-LIKE GROWTH-FACTOR RECEPTOR - EPITOPE MAPPING, EFFECTS ON LIGAND-BINDING, AND BIOLOGICAL-ACTIVITY** *JOURNAL OF BIOLOGICAL CHEMISTRY*
 Soos, M. A., Field, C. E., Lammers, R., Ullrich, A., Zhang, B., Roth, R. A., Andersen, A. S., Kjeldsen, T., Siddle, K.
 1992; 267 (18): 12955-12963

- **AN UNUSUAL ACTIVE-SITE IDENTIFIED IN A FAMILY OF ZINC METALLOENDOPEPTIDASES** *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 Becker, A. B., Roth, R. A.
 1992; 89 (9): 3835-3839

- **COMPARISON OF THE ENZYMATIC AND BIOCHEMICAL-PROPERTIES OF HUMAN INSULIN-DEGRADING ENZYME AND ESCHERICHIA-COLI PROTEASE III** *JOURNAL OF BIOLOGICAL CHEMISTRY*
 Li, D., Becker, A. B., Suzuki, A., Roth, R. A.
 1992; 267 (4): 2414-2420

- **SUBSTRATES AND SIGNALING COMPLEXES - THE TORTURED PATH TO INSULIN ACTION** *JOURNAL OF CELLULAR BIOCHEMISTRY*
 Roth, R. A., Zhang, B., Chin, J. E., Kovacina, K.
 1992; 48 (1): 12-18

- **A NOVEL ZINC-BINDING DOMAIN CONSERVED IN METALLOENDOPEPTIDASES FROM BACTERIA TO MAN**
 Becker, A. B., Ding, L., Roth, R. A.
 FEDERATION AMER SOC EXP BIOL. 1992: A410–A410

- **Number 1 and counting. Current biology**
 Roth, R. A.
 1991; 1 (6): 372-374

- **INSULIN-STIMULATED SERINE AND THREONINE PHOSPHORYLATION OF THE HUMAN INSULIN-RECEPTOR - AN ASSESSMENT OF THE ROLE OF SERINES 1305-1306 AND THREONINE-1348 BY THEIR REPLACEMENT WITH NEUTRAL OR NEGATIVELY CHARGED AMINO-ACIDS** *JOURNAL OF BIOLOGICAL CHEMISTRY*
 Tavare, J. M., Zhang, B., Ellis, L., Roth, R. A.
 1991; 266 (32): 21804-21809

- **A REGION OF THE INSULIN-RECEPTOR IMPORTANT FOR LIGAND-BINDING (RESIDUES 450-601) IS RECOGNIZED BY PATIENTS AUTOIMMUNE ANTIBODIES AND INHIBITORY MONOCLONAL-ANTIBODIES** *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 Zhang, B., Roth, R. A.
 1991; 88 (21): 9858-9862

- **EVIDENCE FOR HYBRID RODENT AND HUMAN INSULIN-RECEPTORS IN TRANSFECTED CELLS** *JOURNAL OF BIOLOGICAL CHEMISTRY*
 Chin, J. E., Tavare, J. M., Ellis, L., Roth, R. A.
 1991; 266 (24): 15587-15590

- **BINDING-PROPERTIES OF CHIMERIC INSULIN-RECEPTORS CONTAINING THE CYSTEINE-RICH DOMAIN OF EITHER THE INSULIN-LIKE GROWTH FACTOR-I RECEPTOR OR THE INSULIN-RECEPTOR RELATED RECEPTOR** *BIOCHEMISTRY*
 Zhang, B., Roth, R. A.
 1991; 30 (21): 5113-5117

- **CHARACTERIZATION OF LATENT TRANSFORMING GROWTH-FACTOR-BETA-2 FROM MONKEY KIDNEY-CELLS** *ENDOCRINOLOGY*
 Lioubin, M. N., MADISEN, L., Roth, R. A., Purchio, A. F.
 1991; 128 (5): 2291-2296

- **ASSESSMENT OF THE INSITU TYROSINE KINASE-ACTIVITY OF MUTANT INSULIN-RECEPTORS LACKING TYROSINE AUTOPHOSPHORYLATION SITE-1162 AND SITE-1163** *MOLECULAR ENDOCRINOLOGY*
 Yonezawa, K., Roth, R. A.
 1991; 5 (2): 194-200

- **MOLECULAR-BASIS OF THE ACTIVATION OF THE TUMORIGENIC POTENTIAL OF GAG INSULIN-RECEPTOR CHIMERAS** *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
THE REGULATORY ROLE OF KNOWN TYROSINE AUTOPHOSPHORYLATION SITES OF THE INSULIN-RECEPTOR KINASE DOMAIN - AN ASSESSMENT BY REPLACEMENT WITH NEUTRAL AND NEGATIVELY CHARGED AMINO-ACIDS *JOURNAL OF BIOLOGICAL CHEMISTRY*
Zhang, B., Tavare, J. M., Ellis, L., Roth, R. A.
1991; 266 (2): 990-996

CHARACTERIZATION OF LATENT RECOMBINANT TGF-BETA-2 PRODUCED BY CHINESE-HAMSTER OVARY CELLS *JOURNAL OF CELLULAR BIOCHEMISTRY*
Lioubin, M. N., MADISEN, L., MARQUARDT, H., Roth, R., Kovacina, K. S., Purchio, A. F.
1991; 45 (1): 112-121

ENDOGENOUS SUBSTRATES OF THE INSULIN-RECEPTOR - STUDIES WITH CELLS EXPRESSING WILD-TYPE AND MUTANT RECEPTORS *3RD INTERNATIONAL SYMPOSIUM ON MOLECULAR AND CELLULAR BIOLOGY OF INSULIN AND INSULIN-LIKE GROWTH FACTORS*
Yonezawa, K., Pierce, S., Stover, C., Aggerbeck, M., Rutter, W. J., Roth, R. A.
PLENUM PRESS DIV PLENUM PUBLISHING CORP.1991: 227–238

MONOCLONAL-ANTIBODY ALPHA-IR-3 INHIBITS THE ABILITY OF INSULIN-LIKE GROWTH FACTOR-II TO STIMULATE A SIGNAL FROM THE TYPE-I RECEPTOR WITHOUT INHIBITING ITS BINDING *BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS*
STEELEPERKINS, G., Roth, R. A.
1990; 171 (3): 1244-1251

IDENTIFICATION OF RESIDUES IN THE INSULIN MOLECULE IMPORTANT FOR BINDING TO INSULIN-DEGRADING ENZYME *BIOCHEMISTRY*
1990; 29 (33): 7727-7733

INSULIN-DEGRADING ENZYME - STABLE EXPRESSION OF THE HUMAN COMPLEMENTARY-DNA, CHARACTERIZATION OF ITS PROTEIN PRODUCT, AND CHROMOSOMAL MAPPING OF THE HUMAN AND MOUSE GENES *MOLECULAR ENDOCRINOLOGY*
Affholter, J. A., Hsieh, C. L., FRANCKE, U., Roth, R. A.
1990; 4 (8): 1125-1135

INSULIN ACTIVATES THE KINASE-ACTIVITY OF THE RAF-1 PROTOONCOGENE BY INCREASING ITS SERINE PHOSPHORYLATION *JOURNAL OF BIOLOGICAL CHEMISTRY*
1990; 265 (21): 12115-12118

INSULIN-MIMETIC ANTIINSULIN RECEPTOR MONOCLONAL-ANTIBODIES STIMULATE RECEPTOR KINASE-ACTIVITY IN INTACT-CELLS *JOURNAL OF BIOLOGICAL CHEMISTRY*
STEELEPERKINS, G., Roth, R. A.
1990; 265 (16): 9458-9463

VARIOUS PROTEINS MODULATE THE KINASE-ACTIVITY OF THE INSULIN-RECEPTOR *FASEB JOURNAL*
Yonezawa, K., Roth, R. A.
1990; 4 (2): 194-200

PHOSPHATIDYLINOSITOL KINASE OR AN ASSOCIATED PROTEIN IS A SUBSTRATE FOR THE INSULIN-RECEPTOR TYROSINE KINASE *JOURNAL OF BIOLOGICAL CHEMISTRY*
Endemann, G., Yonezawa, K., Roth, R. A.
1990; 265 (1): 396-400

INSULIN-RECEPTOR STRUCTURE AND FUNCTION IN NORMAL AND PATHOLOGICAL CONDITIONS *ANNUAL REVIEW OF MEDICINE*
Becker, A. B., Roth, R. A.
1990; 41: 99-115

SUBSTRATES OF THE INSULIN-RECEPTOR KINASE *7TH INTERNATIONAL CONF ON CYCLIC NUCLEOTIDES, CALCIUM, AND PROTEIN PHOSPHORYLATION*
Yonezawa, K., Endemann, G., Kovacina, K. S., Chin, J. E., Stover, C., Roth, R. A.
RAVEN PRESS.1990: 266–272
• INSULIN-LIKE GROWTH FACTOR-II MANNOSE-6-PHOSPHATE RECEPTOR - STRUCTURE AND FUNCTION 17TH NOBEL CONF OF THE KAROLINSKA INST - GROWTH FACTORS : FROM GENES TO CLINICAL APPLICATION
 Roth, R. A., Kovacina, K. S., STEELEPERKINS, G., Purchio, A. F.
 RAVEN PRESS. 1990: 73–83

• SUBSTRATES OF THE INSULIN-RECEPTOR KINASE ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH
 Yonezawa, K., Endemann, G., Kovacina, K. S., Chin, J. E., Stover, C., Roth, R. A.
 1990; 24: 266-272

• A ROLE FOR THE INSULIN-LIKE GROWTH FACTOR-II/MANNOSE-6-PHOSPHATE RECEPTOR IN THE INSULIN-INDUCED INHIBITION OF PROTEIN CATABOLISM MOLECULAR ENDOCRINOLOGY
 Kovacina, K. S., STEELEPERKINS, G., Roth, R. A.
 1989; 3 (6): 901-906

• INTERACTIONS OF RECOMBINANT AND PLATELET TRANSFORMING GROWTH FACTOR-BETA-1 PRECURSOR WITH THE INSULIN-LIKE GROWTH FACTOR-II MANNOSE 6-PHOSPHATE RECEPTOR BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
 Kovacina, K. S., STEELEPERKINS, G., Purchio, A. F., Lioubin, M., MIYAZONO, K., HELDIN, C. H., Roth, R. A.
 1989; 160 (1): 393-403

• INTERNALIZATION AND DEGRADATION OF INSULIN BY A HUMAN INSULIN RECEPTOR-V-ROS HYBRID IN CHINESE-HAMSTER OVARY CELLS BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
 Hari, J., Yokono, K., Yonezawa, K., Roth, R. A., Baba, S.
 1989; 158 (3): 705-711

• HUMAN INSULIN-DEGRADING ENZYME SHARES STRUCTURAL AND FUNCTIONAL HOMOLOGIES WITH ESCHERICHIA-COLI PROTEASE-III SCIENCE
 Affholter, J. A., Fried, V. A., Roth, R. A.
 1988; 242 (4884): 1415-1418

• IDENTIFICATION OF MANNOSE 6-PHOSPHATE IN 2 ASPARAGINE-LINKED SUGAR CHAINS OF RECOMBINANT TRANSFORMING GROWTH FACTOR-BETA-1 PRECURSOR JOURNAL OF BIOLOGICAL CHEMISTRY
 1988; 263 (28): 14211-14215

• EXPRESSION AND CHARACTERIZATION OF A FUNCTIONAL HUMAN INSULIN-LIKE GROWTH FACTOR-I RECEPTOR JOURNAL OF BIOLOGICAL CHEMISTRY
 STEELEPERKINS, G., Turner, J., Edman, J. C., Hari, J., Pierce, S. B., Stover, C., Rutter, W. J., Roth, R. A.
 1988; 263 (23): 11486-11492

• STRUCTURE OF THE RECEPTOR FOR INSULIN-LIKE GROWTH FACTOR-II - THE PUZZLE AMPLIFIED SCIENCE
 Roth, R. A.
 1988; 239 (4845): 1269-1271

• ANALYSIS OF INTRACELLULAR PROTEIN FUNCTION BY ANTIBODY INJECTION IMMUNOLOGY TODAY
 Morgan, D. O., Roth, R. A.
 1988; 9 (3): 84-88

• INSULIN AND INSULIN-LIKE GROWTH-FACTOR RECEPTORS AND RESPONSES COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY
 Roth, R. A., STEELEPERKINS, G., Hari, J., Stover, C., Pierce, S., Turner, J., Edman, J. C., Rutter, W. J.
 1988; 53: 537-543

• CHARACTERIZATION OF THE INSULIN AND INSULIN-LIKE GROWTH-FACTOR RECEPTORS ISI ATLAS OF SCIENCE-BIOCHEMISTRY
 Roth, R. A.
 1988; 1 (2): 115-119

• INTERACTIONS OF THE RECEPTOR FOR INSULIN-LIKE GROWTH FACTOR-II WITH MANNOSE-6-PHOSPHATE AND ANTIBODIES TO THE MANNOSE-6-PHOSPHATE RECEPTOR BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
 1987; 149 (2): 600-606
• DEFECTIVE INTERNALIZATION OF INSULIN AND ITS RECEPTOR IN CELLS EXPRESSING MUTATED INSULIN-RECEPTORS LACKING KINASE-ACTIVITY JOURNAL OF BIOLOGICAL CHEMISTRY
Hari, J., Roth, R. A.
1987; 262 (32): 15341-15344

• THE RECEPTOR FOR INSULIN-LIKE GROWTH FACTOR-II MEDIATES AN INSULIN-LIKE RESPONSE EMBO JOURNAL
Hari, J., Pierce, S. B., Morgan, D. O., Sara, V., Smith, M. C., Roth, R. A.
1987; 6 (11): 3367-3371

• INSULIN-LIKE GROWTH FACTOR-II RECEPTOR AS A MULTIFUNCTIONAL BINDING-PROTEIN NATURE
Morgan, D. O., Edman, J. C., Standring, D. N., Fried, V. A., Smith, M. C., Roth, R. A., Rutter, W. J.
1987; 329 (6137): 301-307

• ACTIVATION OF TRANSFORMING POTENTIAL OF THE HUMAN INSULIN-RECEPTOR GENE PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
1987; 84 (16): 5725-5729

• HETEROLOGOUS TRANSMEMBRANE SIGNALING BY A HUMAN INSULIN-RECEPTOR V-ROS HYBRID IN CHINESE-HAMSTER OVARY CELLS PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Ellis, L., Morgan, D. O., Jong, S. M., Wang, L. H., Roth, R. A., Rutter, W. J.
1987; 84 (15): 5101-5105

• INVIVO CROSS-LINKING OF PROTEIN DISULFIDE ISOMERASE TO IMMUNOGLOBULINS BIOCHEMISTRY
Roth, R. A., Pierce, S. B.
1987; 26 (14): 4179-4182

• ANTIBODY-INDUCED DOWN-REGULATION OF A MUTATED INSULIN-RECEPTOR LACKING AN INTACT CYTOPLASMIC DOMAIN BIOCHEMISTRY
Morgan, D. O., Ellis, L., Rutter, W. J., Roth, R. A.
1987; 26 (11): 2959-2963

• RAS P21 AS A POTENTIAL MEDIATOR OF INSULIN ACTION IN XENOPUS OOCYTES SCIENCE
KORN, L. J., Siebel, C. W., MCCORMICK, F., Roth, R. A.
1987; 236 (4803): 840-843

Ebina, Y., Araki, E., Taira, M., Shimada, F., Mori, M., CRAIK, C. S., Siddle, K., Pierce, S. B., Roth, R. A., Rutter, W. J.
1987; 84 (3): 704-708

• A MEMBRANE-ANCHORED CYTOPLASMIC DOMAIN OF THE HUMAN INSULIN-RECEPTOR MEDIATES A CONSTITUTIVELY ELEVATED INSULIN-INDEPENDENT UPTAKE OF 2-DEOXYGLUCOSE MOLECULAR ENDOCRINOLOGY
Ellis, L., Morgan, D. O., Clauser, E., Roth, R. A., Rutter, W. J.

• PHOSPHORYLATION OF PURIFIED INSULIN-RECEPTOR BY CAMP KINASE DIABETES
Roth, R. A., Beaudoin, J.
1987; 36 (1): 123-126

• FUNCTIONAL DOMAINS OF HUMAN INSULIN-RECEPTOR CDNA ANNALES D ENDOCRINOLOGIE
Clauser, E., Ellis, L., Morgan, D., Edery, M., Roth, R. A., Rutter, W. J.
1987; 48 (1): 40-41

• THE HUMAN INSULIN-RECEPTOR CDNA- A NEW TOOL TO STUDY THE FUNCTION OF THIS RECEPTOR JOURNAL OF RECEPTOR RESEARCH
Clauser, E., Ellis, L., Morgan, D., Edery, M., Roth, R. A., Rutter, W. J.
1987; 7 (1-4): 377-404
ACUTE INSULIN ACTION REQUIRES INSULIN-RECEPTOR KINASE-ACTIVITY - INTRODUCTION OF AN INHIBITORY MONOCLONAL-
ANTIBODY INTO MAMMALIAN-CELLS BLOCKS THE RAPID EFFECTS OF INSULIN PROCEEDINGS OF THE NATIONAL ACADEMY OF
SCIENCES OF THE UNITED STATES OF AMERICA
Morgan, D. O., Roth, R. A.
1987; 84 (1): 41-45

A SOLID-PHASE COMPETITIVE RADIOIMMUNOASSAY FOR THE INSULIN-RECEPTOR ANALYTICAL BIOCHEMISTRY
Roth, R. A., Beaudoin, J.
1986; 159 (1): 163-168

LINKING FUNCTIONAL DOMAINS OF THE HUMAN INSULIN-RECEPTOR WITH THE BACTERIAL ASPARTATE RECEPTOR PROCEEDINGS
OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
1986; 83 (21): 8137-8141

INSULIN AND INSULIN-LIKE GROWTH-FACTOR RECEPTORS AND RESPONSES IN CULTURED HUMAN-MUSCLE CELLS AMERICAN
JOURNAL OF PHYSIOLOGY
Shimizu, M., Webster, C., Morgan, D. O., Blau, H. M., Roth, R. A.
1986; 251 (5): E611-E615

PURIFICATION AND CHARACTERIZATION OF THE RECEPTOR FOR INSULIN-LIKE GROWTH FACTOR-I BIOCHEMISTRY
Morgan, D. O., JARNAGIN, K., Roth, R. A.
1986; 25 (19): 5560-5564

EFFECT OF EXPERIMENTAL DIABETES ON INSULIN BINDING BY RENAL BASOLATERAL MEMBRANES KIDNEY INTERNATIONAL
Rabkin, R., Hirayama, P., Roth, R. A., Frank, B. H.
1986; 30 (3): 348-354

IDENTIFICATION OF A MONOCLONAL-ANTIBODY WHICH CAN DISTINGUISH BETWEEN 2 DISTINCT SPECIES OF THE TYPE-I
RECEPTOR FOR INSULIN-LIKE GROWTH-FACTOR BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
Morgan, D. O., Roth, R. A.
1986; 138 (3): 1341-1347

PROTEIN-KINASE-C DIRECTLY PHOSPHORYLATES THE INSULIN-RECEPTOR INVITRO AND REDUCES ITS PROTEIN-TYROSINE
KINASE-ACTIVITY PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
1986; 83 (16): 5822-5824

REPLACEMENT OF INSULIN-RECEPTOR TYROSINE RESIDUES 1162 AND 1163 COMPROMISES INSULIN-STIMULATED KINASE-
ACTIVITY AND UPTAKE OF 2-DEOXYGLUCOSE CELL
Ellis, L., Clauser, E., Morgan, D. O., Edery, M., Roth, R. A., Rutter, W. J.
1986; 45 (5): 721-732

INHIBITION OF INSULIN DEGRADATION BY HEPATOMA-CELLS AFTER MICROINJECTION OF MONOCLONAL-ANTIBODIES TO A
SPECIFIC CYTOSONIC PROTEASE PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Shii, K., Roth, R. A.
1986; 83 (12): 4147-4151

PURIFICATION AND CHARACTERIZATION OF INSULIN-DEGRADING ENZYME FROM HUMAN-ERYTHROCYTES DIABETES
Shii, K., Yokono, K., Baba, S., Roth, R. A.
1986; 35 (6): 675-683

CHARACTERIZATION OF THE INSULIN AND INSULIN-LIKE GROWTH-FACTOR RECEPTORS AND RESPONSIVITY OF A FIBROBLAST
ADIPOCYTE CELL-LINE BEFORE AND AFTER DIFFERENTIATION BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
Shimizu, M., Torti, F., Roth, R. A.
1986; 137 (1): 552-558

MAPPING SURFACE-STRUCTURES OF THE HUMAN INSULIN-RECEPTOR WITH MONOCLONAL-ANTIBODIES - LOCALIZATION OF
MAIN IMMUNOGENIC REGIONS TO THE RECEPTOR KINASE DOMAIN BIOCHEMISTRY
Morgan, D. O., Roth, R. A.
1986; 25 (6): 1364-1371
• PURIFICATION AND CHARACTERIZATION OF THE HUMAN-BRAIN INSULIN-RECEPTOR JOURNAL OF BIOLOGICAL CHEMISTRY
Roth, R. A., Morgan, D. O., Beaudoin, J., Sara, V.
1986; 261 (8): 3753-3757

• MECHANISMS OF RECEPTOR-MEDIATED TRANSMEMBRANE COMMUNICATION COLD SPRING HARBOR SYMPOSA ON QUANTITATIVE BIOLOGY
1986; 51: 773-784

• Monoclonal antibodies to the insulin receptor as probes of insulin receptor structure and function. Horizons in biochemistry and biophysics
Goldfine, I. D., Roth, R. A.
1986; 8: 471-502

• [Cloning and expression of human insulin receptors]. Journées annuelles de diabétologie de l'Hôtel-Dieu
Clauser, E., Ellis, L., Edery, M., Ebina, Y., Roth, R., Rutter, W. J.
1986: 199-205

• INSULIN ACTION IS BLOCKED BY A MONOCLOAL-ANTIBODY THAT INHIBITS THE INSULIN-RECEPTOR KINASE PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Morgan, D. O., Ho, L., KORN, L. J., Roth, R. A.
1986; 83 (2): 328-332

• Characterization of an insulin degrading enzyme from cultured human lymphocytes. Diabetes research and clinical practice
Roth, R. A., Mesirow, M. L., Cassell, D. J., Yokono, K., Baba, S.
1985; 1 (1): 31-39

• THE HUMAN INSULIN-RECEPTOR CDNA - THE STRUCTURAL BASIS FOR HORMONE-ACTIVATED TRANSMEMBRANE SIGNALING CELL
Ebina, Y., Ellis, L., JARNAGIN, K., Edery, M., Graf, L., Clauser, E., Ou, J. H., MASIASZ, F., Kan, Y. W., Goldfine, I. D., Roth, R. A., Rutter, W. J.
1985; 40 (4): 747-758

• SEQUENCE OF PROTEIN DISULFIDE ISOMERASE AND IMPLICATIONS OF ITS RELATIONSHIP TO THIOREDOXIN NATURE
Edman, J. C., Ellis, L., Blacher, R. W., Roth, R. A., Rutter, W. J.
1985; 317 (6034): 267-270

• MONOCLOAL-ANTIBODIES TO THE INSULIN-RECEPTOR PHARMACOLOGY & THERAPEUTICS
Roth, R. A., Morgan, D. O.
1985; 28 (1): 1-16

• EXPRESSION OF A FUNCTIONAL HUMAN INSULIN-RECEPTOR FROM A CLONED CDNA IN CHINESE-HAMSTER OVARY CELLS PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Ebina, Y., Edery, M., Ellis, L., Sundring, D., Beaudoin, J., Roth, R. A., Rutter, W. J.
1985; 82 (23): 8014-8018

• DEGRADATION OF INSULIN-LIKE GROWTH FACTOR-I AND FACTOR-II BY A HUMAN INSULIN DEGRADING ENZYME ENDOCRINE RESEARCH
Roth, R. A., Mesirow, M. L., Yokono, K., Baba, S.
1984; 10 (2): 101-112

• PRODUCTION AND CHARACTERIZATION OF A MONOCLOAL-ANTIBODY TO RAT-LIVER THIOL - PROTEIN-DISULFIDE OXIDOREDUCTASE - GLUTATHIONE-INSULIN TRANSHYDROGENASE BIOCHIMICA ET BIOPHYSICA ACTA
Roth, R. A., Mesirow, M. L.
1984; 788 (2): 189-192

• CHARACTERIZATION OF THE SERUM FROM A PATIENT WITH INSULIN RESISTANCE AND HYPOGLYCEMIA - EVIDENCE FOR MULTIPLE POPULATIONS OF INSULIN-RECEPTOR ANTIBODIES WITH DIFFERENT RECEPTOR-BINDING AND INSULIN-MIMICKING ACTIVITIES DIABETES
DEPRRRO, R., Roth, R. A., Rossetti, L., Goldfine, I. D.
1984; 33 (3): 301-304

• ATP AND OTHER NUCLEOSIDE TRIPHOSPHATES INHIBIT THE BINDING OF INSULIN TO ITS RECEPTOR METABOLISM-CLINICAL AND EXPERIMENTAL
Trischitta, V., Vigneri, R., Roth, R. A., Goldfine, I. D.
1984; 33 (6): 577-581

- EFFECTS OF COVALENTLY LINKED INSULIN DIMERS ON RECEPTOR KINASE-ACTIVITY AND RECEPTOR DOWN REGULATION. FEBS LETTERS
Roth, R. A., Cassell, D. J., Morgan, D. O., Tatnell, M. A., Jones, R. H., Schuttler, A., Brandenburg, D.
1984; 170 (2): 360-364

- DEGRADATION OF INSULIN BY ISOLATED MOUSE PANCREATIC ACINI - EVIDENCE FOR CELL-SURFACE PROTEASE ACTIVITY. DIABETES
Goldfine, I. D., Williams, J. A., Bailey, A. C., Wong, K. Y., Iwamoto, Y., Yokono, K., Baba, S., Roth, R. A.
1984; 33 (1): 64-72

- Preferential degradation of the beta subunit of purified insulin receptor. Effect on insulin binding and protein kinase activities of the receptor. journal of biological chemistry
Roth, R. A., Mesirow, M. L., Cassell, D. J.
1983; 258 (23): 14456-14460

- Regulation of the insulin receptor by a monoclonal anti-receptor antibody. Evidence that receptor down regulation can be independent of insulin action. journal of biological chemistry
Roth, R. A., Maddux, B. A., Cassell, D. J., Goldfine, I. D.
1983; 258 (20): 12094-12097

- INSULIN-RICIN B CHAIN CONJUGATE HAS ENHANCED BIOLOGICAL-ACTIVITY IN INSULIN-INSENSITIVE CELLS. ENDOCRINOLOGY
Roth, R. A., Iwamoto, Y., Maddux, B., Goldfine, I. D.
1983; 112 (6): 2193-2199

- REGULATION OF INSULIN-RECEPTOR KINASE-ACTIVITY BY INSULIN MIMICKERS AND AN INSULIN ANTAGONIST. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
Roth, R. A., Cassell, D. J., Maddux, B. A., Goldfine, I. D.
1983; 115 (1): 245-252

- PREFERENTIAL DEGRADATION OF THE BETA-SUBUNIT OF PURIFIED INSULIN-RECEPTOR - EFFECT ON INSULIN BINDING AND PROTEIN-KINASE ACTIVITIES OF THE RECEPTOR. JOURNAL OF BIOLOGICAL CHEMISTRY
Roth, R. A., Mesirow, M. L., Cassell, D. J.
1983; 258 (23): 4456-4460

- INSULIN-RECEPTOR - EVIDENCE THAT IT IS A PROTEIN-KINASE. SCIENCE
Roth, R. A., Cassell, D. J.
1983; 219 (4582): 299-301

- IDENTIFICATION OF INSULIN-DEGRADING ENZYME ON THE SURFACE OF CULTURED HUMAN-LYMPHOCYTES, RAT HEPATOMA-CELLS, AND PRIMARY CULTURES OF RAT HEPATOCYTES. ENDOCRINOLOGY
Yokono, K., Roth, R. A., Baba, S.
1982; 111 (4): 1102-1108

- MONOClonAL-ANTIBODIES TO THE HUMAN INSULIN-RECEPTOR BLOCK INSULIN BINDING AND INHIBIT INSULIN ACTION. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES
Roth, R. A., Cassell, D. J., Wong, K. Y., Maddux, B. A., Goldfine, I. D.
1982; 79 (23): 7312-7316

- PRODUCTION OF ANTIBODIES THAT INHIBIT THE BINDING OF INSULIN TO ITS RECEPTOR. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
Roth, R. A., Wong, K. Y., Maddux, B. A., Goldfine, I. D.
1981; 101 (3): 979-987

- INSULIN-RICIN B-CHAIN CONJUGATE - A HYBRID MOLECULE WITH RICIN-BINDING ACTIVITY AND INSULIN BIOLOGICAL-ACTIVITY. JOURNAL OF BIOLOGICAL CHEMISTRY
Roth, R. A., Maddux, B. A., Wong, K. Y., Iwamoto, Y., Goldfine, I. D.
1981; 256 (11): 5350-5354