Telomeres, the nucleotide repeats that cap the ends of eukaryotic chromosomes, serve critical roles in promoting cell viability and in maintaining chromosomal stability. In humans, telomeres shorten progressively with cell division and aging because DNA polymerase cannot fully replicate the extreme ends of chromosomes. Critical telomere shortening and loss of the protective telomere capping function in cell culture initiates senescence and crisis responses that profoundly alter chromosome stability, cell cycle progression and survival. Expression of telomerase, the reverse transcriptase that synthesizes telomere repeats, is sufficient to lengthen and stabilize telomeres, thus enabling cells to proliferate in an unlimited fashion. Telomerase is expressed in stem cells and progenitor cells in self-renewing tissues, is
downregulated with differentiation and upregulated in the vast majority of human cancers. In the Artandi lab, we are interested in unraveling the molecular and cellular mechanisms according to which telomeres and telomerase modulate stem cell function and carcinogenesis.

TERT and STEM CELLS

Telomerase is comprised of two subunits: TERT, the telomerase reverse transcriptase, and TERC, the telomerase RNA component. In stem cell and progenitor cell compartments, TERT serves a critical role in maintaining telomere length and function to support tissue homeostasis. However, TERT serves an additional function in stem cells, distinct from its role in telomere lengthening and we are actively studying this new role. We have devised new means of identifying telomerase-expressing cells in vivo and we are investigating the location and function of these cells in diverse tissues.

TISSUE REGENERATION AND AGING

Aging in humans and other mammals is associated with impaired proliferative responses in settings of stress, suggesting that altered stem cell function may underlie certain aspects of aging. We are interested in understanding how stem cells self-renew and differentiate and how TERT modulates stem cell function. One major limitation to this understanding is the inability to identify telomerase-positive cells in vivo. We have developed new approaches to solve this problem and are investigating telomerase-positive cells in vivo.

TELOMERASE TRAFFICKING AND ASSEMBLY

Telomerase is a large RNP with complex regulation in human cells. Using IP-MS approaches, we identified a critical new component of the telomerase holoenzyme, TCAB1. TCAB1 is essential for guiding the trafficking of telomerase to Cajal bodies within the nucleus and also to chromosome ends. We seek to understand in molecular detail how telomerase interacts with telomeres and adds telomere repeats in human cells.

TELOMERASE AND DISEASE

Germline mutations in telomerase components underlie several seemingly unrelated disease states, including the bone marrow failure syndrome dyskeratosis congenita, idiopathic pulmonary fibrosis, aplastic anemia and cirrhosis. We are using iPS cell-based approaches to study the mechanisms at play in these diseases with the goal of reversing the life-threatening phenotypes in these patients.

Teaching

COURSES

2017-18
- Current Issues in Aging: GENE 221 (Spr)

2016-17
- Current Issues in Aging: GENE 221 (Spr)

STANFORD ADVISEES

Postdoctoral Faculty Sponsor
Lu Chen, Yuchao Gu

Postdoctoral Research Mentor
Lu Chen, Yuchao Gu

GRADUATE AND FELLOWSHIP PROGRAM AFFILIATIONS

- Biochemistry (Phd Program)
- Cancer Biology (Phd Program)
- Hematology (Fellowship Program)
- Oncology (Fellowship Program)

Publications

PUBLICATIONS

 Neuhoefer, P., Lu, R., Charville, G. W., Artandi, S. E.
 AMER ASSOC CANCER RESEARCH.2018: 56–57

- Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature
 2018

- An Activity Switch in Human Telomerase Based on RNA Conformation and Shaped by TCAB1. Cell
 2018

 Roake, C. M., Artandi, S. E.
 2017; 7 (5)

- Pulmonary arteriovenous malformations: an uncharacterised phenotype of dyskeratosis congenita and related telomere biology disorders EUROPEAN RESPIRATORY JOURNAL
 2017; 49 (1)

- DNA repair: Telomere-lengthening mechanism revealed. Nature
 Roake, C. M., Artandi, S. E.
 2016; 539 (7627): 35-36

- Dual SMAD Signaling Inhibition Enables Long-Term Expansion of Diverse Epithelial Basal Cells. Cell stem cell
 2016; 19 (2): 217-231

- High telomerase is a hallmark of undifferentiated spermatogonia and is required for maintenance of male germline stem cells. Genes & development
 Pech, M. F., Garbuzov, A., Hasegawa, K., Sukhwani, M., Zhang, R. J., Benayoun, B. A., Brockman, S. A., Lin, S., Brunet, A., Orwig, K. E., Artandi, S. E.
 2015; 29 (23): 2420-2434

- Keeping It in the Family: ATRX Loss Promotes Persistent Sister Telomere Cohesion in ALT Cancer Cells. Cancer cell
 Roake, C. M., Artandi, S. E.
 2015; 28 (3): 277-279

- Reversibility of Defective Hematopoiesis Caused by Telomere Shortening in Telomerase Knockout Mice PLOS ONE
 2015; 10 (7)

- A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate. Cell
A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate. *Cell*
2015; 160 (5): 1013-1026

Inhibition of pluripotency networks by the rb tumor suppressor restricts reprogramming and tumorigenesis. *Cell stem cell*
2015; 16 (1): 39-50

Reversibility of Defective Hematopoiesis Caused by Telomere Shortening in Telomerase Knockout Mice. *PloS one*
2014; 159 (6): 1389-1403

Understanding telomere diseases through analysis of patient-derived iPS cells. *Current opinion in genetics & development*
Batista, L. F., Artandi, S. E.
2013; 23 (5): 526-533

TPP1 OB-Fold Domain Controls Telomere Maintenance by Recruiting Telomerase to Chromosome Ends *CELL*
2012; 150 (3): 481-494

Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling. *Nature medicine*
2012; 18 (1): 111-119

Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling *NATURE MEDICINE*
2012; 18 (1): 111-119

Genomic Maps of Long Noncoding RNA Occupancy Reveal Principles of RNA-Chromatin Interactions *MOLECULAR CELL*
Chu, C., Qu, K., Zhong, F. L., Artandi, S. E., Chang, H. Y.
2011; 44 (4): 667-678

In Situ Genetic Correction of the Sickle Cell Anemia Mutation in Human Induced Pluripotent Stem Cells Using Engineered Zinc Finger Nucleases *STEM CELLS*
2011; 29 (11): 1717-1726

Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells *NATURE*
2011; 474 (7351): 399-7

TRAPping telomerase within the intestinal stem cell niche *EMBO JOURNAL*
Pech, M. F., Artandi, S. E.
2011; 30 (6): 986-987

Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita *GENES & DEVELOPMENT*
2011; 25 (1): 11-16

* Short Telomeres and Stem Cell Exhaustion Model Duchenne Muscular Dystrophy in mdx/mTR Mice *CELL*

• TCAB1 Driving telomerase to Cajal bodies. *Cell Cycle*. Venteicher, A. S., Artandi, S. E. 2009; 8 (9): 1329-1331

• Telomerase flies the coop: the telomerase RNA component as a viral-encoded oncogene *Journal of Experimental Medicine*
 Artandi, S. E.
 2006; 203 (5): 1143-1145

• Regulation of cellular immortalization and steady-state levels of the telomerase reverse transcriptase through its carboxy-terminal domain *Molecular and Cellular Biology*
 Middleman, E. J., Choi, J. K., Venteicher, A. S., Cheung, P., Artandi, S. E.
 2006; 26 (6): 2146-2159

• Conditional telomerase induction causes proliferation of hair follicle stem cells *Nature*
 2005; 436 (7053): 1048-1052

• Pathways connecting telomeres and p53 in senescence, apoptosis, and cancer *Biochemical and Biophysical Research Communications*
 Artandi, S. E., Attardi, L. D.
 2005; 331 (3): 881-890

• Complex roles for telomeres and telomerase in breast carcinogenesis *Breast Cancer Research*
 Artandi, S. E.
 2003; 5 (1): 37-41

• Constitutive telomerase expression promotes mammary carcinomas in aging mice *Proceedings of the National Academy of Sciences of the United States of America*
 2002; 99 (12): 8191-8196

• Telomere shortening and cell fates in mouse models of neoplasia *Trends in Molecular Medicine*
 Artandi, S. E.
 2002; 8 (1): 44-47

• Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice *Nature*
 2000; 406 (6796): 641-645

• Mice without telomerase: what can they teach us about human cancer? *Nature Medicine*
 Artandi, S. E., DePinho, R. A.
 2000; 6 (8): 852-855

• A critical role for telomeres in suppressing and facilitating carcinogenesis *Current Opinion in Genetics & Development*
 Artandi, S. E., DePinho, R. A.

• p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis *Cell*
 1999; 97 (4): 527-538