Kung Chun Chiu
Postdoctoral Research Fellow, Pathology

Bio

STANFORD ADVISORS
• Edgar Engleman, Postdoctoral Faculty Sponsor

Publications

PUBLICATIONS

- Hypoxia regulates the mitochondrial activity of hepatocellular carcinoma cells through HIF/HEY1/PINK1 pathway. CELL DEATH & DISEASE
 2019; 10: 934

- Induction of Oxidative Stress Through Inhibition of Thioredoxin Reductase 1 Is an Effective Therapeutic Approach for Hepatocellular Carcinoma. HEPATOLOGY
 2019; 69 (4): 1768–86

- Assessment of Stabilization and Activity of the HIFs Important for Hypoxia-Induced Signalling in Cancer Cells. Methods in molecular biology (Clifton, N.J.)
 Chiu, D. K., Zhang, M. S., Tse, A. P., Wong, C. C.
 2019; 1928: 77–99

- RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. HEPATOLOGY
 2018; 67 (6): 2254–70

- Hepatitis transactivator protein X promotes extracellular matrix modification through HIF/LOX pathway in liver cancer. ONCOGENESIS
 2018; 7: 44

- Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3. JOURNAL OF HEPATOLOGY
 2017; 67 (4): 758–69

- Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. NATURE COMMUNICATIONS
 Chiu, D., Tse, A., Xu, I., Di Cui, J., Lai, R., Li, L., Koh, H., Tsang, F., Wei, L., Wong, C., Ng, I., Wong, C.
 2017; 8: 517

- Folate cycle enzyme MTHFD1L confers metabolic advantages in hepatocellular carcinoma. JOURNAL OF CLINICAL INVESTIGATION
 2017; 127 (5): 1856–72
- Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26 *HEPATOLOGY*
 2016; 64 (3): 797–813

- NDUFA4L2 Fine-tunes Oxidative Stress in Hepatocellular Carcinoma *CLINICAL CANCER RESEARCH*
 2016; 22 (12): 3105–17

- Transketolase counteracts oxidative stress to drive cancer development *PROCEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 2016; 113 (6): E725–E734

- Switching of Pyruvate Kinase Isoform L to M2 Promotes Metabolic Reprogramming in Hepatocarcinogenesis *PLOS ONE*
 2014; 9 (12): e115036

- Lysyl Oxidase-Like 2 Is Critical to Tumor Microenvironment and Metastatic Niche Formation in Hepatocellular Carcinoma *HEPATOLOGY*
 2014; 60 (5): 1645–58