Kung Chun Chiu
Postdoctoral Research Fellow, Pathology

Bio

STANFORD ADVISORS
• Edgar Engleman, Postdoctoral Faculty Sponsor

Publications

PUBLICATIONS

- Hypoxia regulates the mitochondrial activity of hepatocellular carcinoma cells through HIF/HEY1/PINK1 pathway. *CELL DEATH & DISEASE*
 2019; 10: 934

- Induction of Oxidative Stress Through Inhibition of Thioredoxin Reductase 1 Is an Effective Therapeutic Approach for Hepatocellular Carcinoma. *HEPATOLOGY*
 2019; 69 (4): 1768–86

- Assessment of Stabilization and Activity of the HIFs Important for Hypoxia-Induced Signalling in Cancer Cells. *Methods in molecular biology (Clifton, N.J.)*
 Chiu, D. K., Zhang, M. S., Tse, A. P., Wong, C. C.
 2019; 1928: 77–99

- RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. *HEPATOLOGY*
 2018; 67 (6): 2254–70

- Hepatitis transactivator protein X promotes extracellular matrix modification through HIF/LOX pathway in liver cancer. *ONCOGENESIS*
 2018; 7: 44

- Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3. *JOURNAL OF HEPATOLOGY*
 2017; 67 (4): 758–69

- Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. *NATURE COMMUNICATIONS*
 Chiu, D., Tse, A., Xu, I., Di Cui, J., Lai, R., Li, L., Koh, H., Tsang, F., Wei, L., Wong, C., Ng, I., Wong, C.
 2017; 8: 517

- Folate cycle enzyme MTHFD1L confers metabolic advantages in hepatocellular carcinoma. *JOURNAL OF CLINICAL INVESTIGATION*
 2017; 127 (5): 1856–72
- **Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26**
 2016; 64 (3): 797–813

- **NDUFA4L2 Fine-tunes Oxidative Stress in Hepatocellular Carcinoma**
 2016; 22 (12): 3105–17

- **Transketolase counteracts oxidative stress to drive cancer development**
 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
 2016; 113 (6): E725–E734

- **Switching of Pyruvate Kinase Isoform L to M2 Promotes Metabolic Reprogramming in Hepatocarcinogenesis**
 PLOS ONE
 2014; 9 (12): e115036

- **Lysyl Oxidase-Like 2 Is Critical to Tumor Microenvironment and Metastatic Niche Formation in Hepatocellular Carcinoma**
 HEPATOLOGY
 2014; 60 (5): 1645–58