Md Tauhidul Islam
Physical Science Research Scientist, Radiation Oncology - Radiation Physics

Publications

PUBLICATIONS

- **Utilizing differential characteristics of high dimensional data as a mechanism for dimensionality reduction** *Pattern Recognition Letters*
 Xing, S. S., Islam, M.
 2022; 157: 1-7

- **Implicit neural representation for radiation therapy dose distribution.** *Physics in medicine and biology*
 Vasudevan, V., Shen, L., Huang, C., Chuang, C. F., Islam, M. T., Ren, H., Yang, Y., Dong, P., Xing, L.
 2022

- **Human-level comparable control volume mapping with a deep unsupervised-learning model for image-guided radiation therapy.** *Computers in biology and medicine*
 Liang, X., Bassenne, M., Hristov, D. H., Islam, M. T., Zhao, W., Jia, M., Zhang, Z., Gensheimer, M., Beadle, B., Le, Q., Xing, L.
 2022; 1800: 105139

- **Artificial intelligence in image-guided radiotherapy: a review of treatment target localization.** *Quantitative imaging in medicine and surgery*
 Zhao, W., Shen, L., Islam, M. T., Qin, W., Zhang, Z., Liang, X., Zhang, G., Xu, S., Li, X.
 2021; 11 (12): 4881-4894

- **Geometry and statistics-preserving manifold embedding for nonlinear dimensionality reduction** *Pattern Recognition Letters*
 Islam, M., Xing, L.
 2021; 151: 155-162

- **Non-Invasive Assessment of the Spatial and Temporal Distributions of Interstitial Fluid Pressure, Fluid Velocity and Fluid Flow in Cancers In Vivo** *IEEE Access*
 Islam, M., Tang, S., Tasciotti, E., Righetti, R.
 2021; 9: 89222-89233

- **Self-Supervised Feature Learning via Exploiting Multi-Modal Data for Retinal Disease Diagnosis** *IEEE Transactions on Medical Imaging*
 Li, X., Jia, M., Islam, M., Yu, L., Xing, L.
 2020; 39 (12): 4023–33

- **A data-driven dimensionality-reduction algorithm for the exploration of patterns in biomedical data.** *Nature biomedical engineering*
 Islam, M. T., Xing, L.
 2020

- **Estimation of Vascular Permeability in Irregularly Shaped Cancers Using Ultrasound Poroelastography** *IEEE Transactions on Biomedical Engineering*
 Islam, M., Tasciotti, E., Righetti, R.
 2020; 67 (4): 1083–96

- **Non-invasive imaging of Young's modulus and Poisson's ratio in cancers in vivo.** *Scientific reports*
 2020; 10 (1): 7266
• A Robust Method to Estimate the Time Constant of Elastographic Parameters IEEE TRANSACTIONS ON MEDICAL IMAGING
 Islam, M., Chaudhry, A., Righetti, R.
 2019; 38 (6): 1358–70

• An analytical poroelastic model of a spherical tumor embedded in normal tissue under creep compression JOURNAL OF BIOMECHANICS
 Islam, M., Righetti, R.
 2019; 89: 48–56

• Non-Invasive Imaging of Normalized Solid Stress in Cancers in Vivo IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM
 Islam, M., Tasciotti, E., Righetti, R.
 2019; 7: 4300209

• A New Poroelastography Method to Assess the Solid Distribution in Cancers IEEE ACCESS
 Islam, M., Righetti, R.
 2019; 7: 103404–15

• A Model-Based Approach to Investigate the Effect of a Long Bone Fracture on Ultrasound Strain Elastography IEEE TRANSACTIONS ON MEDICAL IMAGING
 2018; 37 (12): 2704–17

• A New Method for Estimating the Effective Poisson's Ratio in Ultrasound Poroelastography IEEE TRANSACTIONS ON MEDICAL IMAGING
 Islam, M., Chaudhry, A., Tang, S., Tasciotti, E., Righetti, R.
 2018; 37 (5): 1178–91

• An analytical poroelastic model for ultrasound elastography imaging of tumors PHYSICS IN MEDICINE AND BIOLOGY
 Islam, M., Chaudhry, A., Unnikrishnan, G., Reddy, J. N., Righetti, R.
 2018; 63 (2): 025031