Bio

BIO
Dr. Jamie Imam received her bachelor's degree in Biological Sciences and Psychology from Carnegie Mellon University and her Ph.D. in Genetics from the Stanford School of Medicine. In addition to teaching, Jamie is the Director of the Honors Program in Biology and a Lecturer Consultant with the Center for Teaching and Learning. When she is not teaching or doing science outreach, she enjoys reading, baking and spending time outdoors with her family.

ACADEMIC APPOINTMENTS
• Lecturer, Biology

Publications

PUBLICATIONS
• A high-enrollment course-based undergraduate research experience improves student conceptions of scientific thinking and ability to interpret data. CBE life sciences education
 2015; 14 (2)

• The RB family is required for the self-renewal and survival of human embryonic stem cells NATURE COMMUNICATIONS
 Conklin, J. F., Baker, J., Sage, J.
 2012; 3

• Using Yeast to Determine the Functional Consequences of Mutations in the Human p53 Tumor Suppressor Gene: An Introductory Course-Based Undergraduate Research Experience in Molecular and Cell Biology BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION
 2017; 45 (2): 161-178

• Neat1 is a p53-inducible lincRNA essential for transformation suppression. Genes & development
 2017; 31 (11): 1095–1108

 2016

• A High-Enrollment Course-Based Undergraduate Research Experience Improves Student Conceptions of Scientific Thinking and Ability to Interpret Data CBE-LIFE SCIENCES EDUCATION
 2015; 14 (2)

• A crucial requirement for Hedgehog signaling in small cell lung cancer NATURE MEDICINE

- **Loss of p130 Accelerates Tumor Development in a Mouse Model for Human Small-Cell Lung Carcinoma** *CANCER RESEARCH*
 2010; 70 (10): 3877-3883

- **Keeping an Eye on Retinoblastoma Control of Human Embryonic Stem Cells** *JOURNAL OF CELLULAR BIOCHEMISTRY*
 Conklin, J. F., Sage, J.
 2009; 108 (5): 1023-1030

- **Stabilization and analysis of intron lariats in vivo** *METHODS*
 Conklin, J. F., Goldman, A., Lopez, A. J.
 2005; 37 (4): 368-375

- **Subdivision of large introns in Drosophila by recursive splicing at nonexonic elements** *GENETICS*
 2005; 170 (2): 661-674