Aidan James Fitzpatrick
Ph.D. Student in Electrical Engineering, admitted Autumn 2018

Bio

BIO

AIDAN FITZPATRICK received the B.S. degree in electrical and computer engineering from the University of Massachusetts Amherst, in 2018, and the M.S. degree in electrical engineering from Stanford University in 2020, where he is currently pursuing the Ph.D. degree in electrical engineering.

His current research interests are in computational imaging - specifically at the intersection of electromagnetics, acoustics, and signal processing for the codesign of imaging algorithms and system hardware for non-contact thermoacoustic/photoacoustic, and millimeter wave applications.

LINKS

• News Article - Airborne Sonar: https://news.stanford.edu/2020/11/30/combining-light-sound-see-underwater/
• Project Webpage: https://airbornesonar.stanford.edu/
• Project Video - Airborne Sonar: https://www.youtube.com/watch?v=2YyAnxQkeuk
• LinkedIn Profile: https://www.linkedin.com/in/aidanfitzpatrick23/
• Google Scholar Profile: https://scholar.google.com/citations?user=h0Z2q3sAAAAJ&hl=en&inst=5746887945952177237&oi=ao

Publications

PUBLICATIONS

• Spatial Reconstruction of Soil Moisture Content using Non-Contact Thermoacoustic Imaging 2020 IEEE SENSORS
  Fitzpatrick, A., Singhvi, A., Arbabian, A.
  2020: 1–4

• Resolution Enhanced Non-Contact Thermoacoustic Imaging using Coded Pulse Excitation
  Singhvi, A., Fitzpatrick, A., Arbabian, A., IEEE
  IEEE, 2020

• Resolution Enhanced Non-Contact Thermoacoustic Imaging using Coded Pulse Excitation IEEE International Ultrasonics Symposium (IUS)
  Singhvi, A., Fitzpatrick, A., Arbabian, A.
  2020: 1–4

• An Airborne Sonar System for Underwater Remote Sensing and Imaging IEEE ACCESS
  Fitzpatrick, A., Singhvi, A., Arbabian, A.
  2020: 8: 189945–59

  Nan, H., Fitzpatrick, A., Wang, K., Arbabian, A.
• Non-Invasive Remote Temperature Monitoring Using Microwave-Induced Thermoacoustic Imaging
  IEEE. 2019: 6375–78