Reimagining liquid waste streams as resources can lead to recovery of valuable products and more efficient, less costly approaches to reducing harmful discharges to the environment. Pollutants in effluent streams can be captured and used as valuable inputs to other processes. For example, municipal wastewater contains resources like energy, water, nutrients, and metals. The Tarpeh Lab develops and evaluates novel approaches to resource recovery from “waste” waters at several synergistic scales: molecular mechanisms of chemical transport and transformation; novel unit processes that increase resource efficiency; and systems-level assessments that identify optimization opportunities. We employ understanding of electrochemistry, separations, thermodynamics, kinetics, and reactor design to preferentially recover resources from waste. We leverage these molecular-scale insights to increase the sustainability of engineered processes in terms of energy, environmental impact, and cost.
STANFORD ADVISEES

Doctoral Dissertation Reader (AC)
Joel Schneider

Postdoctoral Faculty Sponsor
Linchao Mu

Postdoctoral Research Mentor
Linchao Mu

Publications

PUBLICATIONS

- **Quantitative Evaluation of an Integrated System for Valorization of Wastewater Algae as Bio-oil, Fuel Gas, and Fertilizer Products** *ENVIRONMENTAL SCIENCE & TECHNOLOGY*
 Li, Y., Tarpeh, W. A., Nelson, K. L., Strathmann, T. J.
 2018; 52 (21): 12717–27

- **Effects of operating and design parameters on ion exchange columns for nutrient recovery from urine** *ENVIRONMENTAL SCIENCE-WATER RESEARCH & TECHNOLOGY*
 Tarpeh, W. A., Wald, I., Wiprachtiger, M., Nelson, K. L.
 2018; 4 (6): 828–38

- **Electrochemical Stripping to Recover Nitrogen from Source-Separated Urine** *ENVIRONMENTAL SCIENCE & TECHNOLOGY*
 Tarpeh, W. A., Barazesh, J. M., Cath, T. Y., Nelson, K. L.
 2018; 52 (3): 1453–60

- **Evaluating ion exchange for nitrogen recovery from source-separated urine in Nairobi, Kenya** *Development Engineering*
 Tarpeh, W. A., Wald, I., Omollo, M. O., Egan, T., Nelson, K. L.
 2018; 3: 188-195

- **Life-Cycle Cost and Environmental Assessment of Decentralized Nitrogen Recovery Using Ion Exchange from Source-Separated Urine through Spatial Modeling** *ENVIRONMENTAL SCIENCE & TECHNOLOGY*
 Kavvada, O., Tarpeh, W. A., Horvath, A., Nelson, K. L.
 2017; 51 (21): 12061–71

- **The sanitation and urban agriculture nexus: urine collection and application as fertilizer in Sao Paulo, Brazil** *JOURNAL OF WATER SANITATION AND HYGIENE FOR DEVELOPMENT*
 Chrispim, M. C., Tarpeh, W. A., Salinas, D. P., Nolasco, M. A.
 2017; 7 (3): 455–65

- **Comparing Ion Exchange Adsorbents for Nitrogen Recovery from Source-Separated Urine** *ENVIRONMENTAL SCIENCE & TECHNOLOGY*
 Tarpeh, W. A., Udert, K. M., Nelson, K. L.
 2017; 51 (4): 2373–81