Publications

Chlamydia trachomatis regulates growth and development in response to host cell fatty acid availability in the absence of lipid droplets. *Cellular Microbiology*
Sharma, M., Recuero-Checa, M. A., Fan, F., Dean, D.
2018; 20 (2)

Chlamydia trachomatis regulates growth and development in response to host cell fatty acid availability in the absence of lipid droplets. *Cellular microbiology*
Sharma, M., Recuero-Checa, M. A., Fan, F. Y., Dean, D.
2018; 20 (2)

Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs). *Scientific Reports*
2016; 6: 23148

A Genome-wide RNAi Screen for Microtubule Bundle Formation and Lysosome Motility Regulation in Drosophila S2 Cells. *Cell Reports*
2016; 14 (3): 611–20

HIF-1 alpha is involved in mediating apoptosis resistance to Chlamydia trachomatis-infected cells. *Cellular Microbiology*
Sharma, M., Machuy, N., Boehme, L., Karunakaran, K., Maeurer, A. P., Meyer, T. F., Rudel, T.
2011; 13 (10): 1573–85

Apoptosis resistance in Chlamydia-infected cells: a fate worse than death? *FEMS Immunology and Medical Microbiology*
Sharma, M., Rudel, T.

Mel-1 Is a Key Regulator of Apoptosis Resistance in Chlamydia trachomatis-Infected Cells. *PLOS ONE*
Rajalingam, K., Sharma, M., Lohmann, C., Oswald, M., Thieck, O., Froelich, C. J., Rudel, T.
2008; 3 (9): e3102

IAP-IAP complexes required for apoptosis resistance of C. trachomatis-infected cells. *PLOS Pathogens*
Rajalingam, K., Sharma, M., Paland, N., Hurwitz, R., Thieck, O., Oswald, M., Machuy, N., Rudel, T.
2006; 2 (10): 1013–23