Benjamin Huynh
Ph.D. Student in Biomedical Informatics, admitted Autumn 2017

Bio

LINKS
- Personal site: https://stanford.edu/~benhuynh

Publications

PUBLICATIONS
- **Public health impacts of an imminent Red Sea oil spill.** *Nature sustainability*
 2021; 4 (12): 1084-1091
- **Public health impacts of an imminent Red Sea oil spill** *NATURE SUSTAINABILITY*
 2021
- **Routine asymptomatic testing strategies for airline travel during the COVID-19 pandemic: a simulation study.** *The Lancet. Infectious diseases*
 2021
- **Frequency of Routine Testing for Coronavirus Disease 2019 (COVID-19) in High-risk Healthcare Environments to Reduce Outbreaks.** *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*
 2020
- **Projected geographic disparities in healthcare worker absenteeism from COVID-19 school closures and the economic feasibility of child care subsidies: a simulation study.** *BMC medicine*
 Chin, E. T., Huynh, B. Q., Lo, N. C., Hastie, T., Basu, S.
 2020; 18 (1): 218
- **Projected geographic disparities in healthcare worker absenteeism from COVID-19 school closures and the economic feasibility of child care subsidies: a simulation study.** *medRxiv : the preprint server for health sciences*
 2020
- **Frequency of routine testing for SARS-CoV-2 to reduce transmission among workers.** *medRxiv : the preprint server for health sciences*
 2020
- **Forecasting Internally Displaced Population Migration Patterns in Syria and Yemen.** *Disaster medicine and public health preparedness*
 Huynh, B. Q., Basu, S.
 2019: 1–6
• Breast lesion classification based on dynamic contrast-enhanced magnetic resonance images sequences with long short-term memory networks. *Journal of medical imaging (Bellingham, Wash.)*
 Antropova, N., Huynh, B., Li, H., Giger, M. L.
 2019; 6 (1): 011002

• Recurrent Neural Networks for Breast Lesion Classification based on DCE-MRIs
 Antropova, N., Huynh, B., Giger, M., Petrick, N., Mori, K.
 SPIE-INT SOC OPTICAL ENGINEERING. 2018

 Li, H. n., Giger, M. L., Huynh, B. Q., Antropova, N. O.
 2017; 4 (4): 041304

• A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. *Medical physics*
 Antropova, N. n., Huynh, B. Q., Giger, M. L.
 2017

• Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. *Journal of medical imaging (Bellingham, Wash.)*
 Huynh, B. Q., Li, H., Giger, M. L.
 2016; 3 (3): 034501-?