Bio

Benjamin Huynh is a postdoctoral fellow in the Department of Epidemiology & Population Health, and is a Global Health Postdoctoral Affiliate within the Center for Innovation in Global Health. His research involves applying and developing data science methods for issues in environmental justice and humanitarian health.

Previously, Dr. Huynh completed his PhD in the Department of Biomedical Data Science at Stanford, and has worked as a data scientist for the World Health Organization and Médecins Sans Frontières. He is an incoming Assistant Professor in the Department of Environmental Health and Engineering at the Johns Hopkins Bloomberg School of Public Health.

STANFORD ADVISORS

• Mathew Kiang, Postdoctoral Faculty Sponsor

LINKS

• Personal site: https://stanford.edu/~benhuy nh

Publications

PUBLICATIONS

• **Public health impacts of an imminent Red Sea oil spill.** *Nature sustainability*
 2021; 4 (12): 1084-1091

• **Public health impacts of an imminent Red Sea oil spill** *NATURE SUSTAINABILITY*
 2021

• **Routine asymptomatic testing strategies for airline travel during the COVID-19 pandemic: a simulation study.** *The Lancet. Infectious diseases*
 2021

• **Frequency of Routine Testing for Coronavirus Disease 2019 (COVID-19) in High-risk Healthcare Environments to Reduce Outbreaks.** *Clinical infectious diseases: an official publication of the Infectious Diseases Society of America*
 2020

• **Projected geographic disparities in healthcare worker absenteeism from COVID-19 school closures and the economic feasibility of child care subsidies: a simulation study.** *BMC medicine*
 Chin, E. T., Huynh, B. Q., Lo, N. C., Hastie, T., Basu, S.
2020; 18 (1): 218

 2020

- Frequency of routine testing for SARS-CoV-2 to reduce transmission among workers. *medRxiv: the preprint server for health sciences*
 2020

- Forecasting Internally Displaced Population Migration Patterns in Syria and Yemen. *Disaster medicine and public health preparedness*
 Huynh, B. Q., Basu, S.
 2019: 1–6

- Breast lesion classification based on dynamic contrast-enhanced magnetic resonance images sequences with long short-term memory networks. *Journal of medical imaging (Bellingham, Wash.)*
 Antropova, N., Huynh, B., Li, H., Giger, M. L.
 2019; 6 (1): 011002

- Recurrent Neural Networks for Breast Lesion Classification based on DCE-MRIs
 Antropova, N., Huynh, B., Giger, M., Petrick, N., Mori, K.
 SPIE-INT SOC OPTICAL ENGINEERING.2018

 Li, H. n., Giger, M. L., Huynh, B. Q., Antropova, N. O.
 2017; 4 (4): 041304

- A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. *Medical physics*
 Antropova, N. n., Huynh, B. Q., Giger, M. L.
 2017

- Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. *Journal of medical imaging (Bellingham, Wash.)*
 Huynh, B. Q., Li, H., Giger, M. L.
 2016; 3 (3): 034501-?