Bio

Justus Kromer's research is devoted to improving deep brain stimulation techniques causing long-lasting symptom relief in patients suffering from neurological disorders, e.g. Parkinson's disease. Being a theoretical physicist in the group of Peter Tass, Justus Kromer performs computer simulations in order to understand stimulation-induced rewiring of synaptic connectivity in symptom-related brain regions.

During his PhD studies at Humboldt University in Berlin, Germany, he gained expertise in the fields of stochastic processes, nonlinear dynamics, and computational neurosciences. He was trained in both, computational studies and theoretical modelling. His general research is devoted to understanding and manipulating noisy nonlinear systems with application to biology such as neuronal networks and signal processing systems, e.g. sensory neurons and chemotactic agents.

PROFESSIONAL EDUCATION

- Diplom, Technische Universität Berlin, Physics (2012)
- Dr. rer. nat, Humboldt-Universität zu Berlin, Theoretical Physics (2016)

Research & Scholarship

LAB AFFILIATIONS

- Peter Tass (9/1/2017)

Publications

PUBLICATIONS

- Coordinated Reset Vibrotactile Stimulation Induces Sustained Cumulative Benefits in Parkinson's Disease. *Frontiers in physiology*
 2021; 12: 624317

- Long-Lasting Desynchronization Effects of Coordinated Reset Stimulation Improved by Random Jitters *Frontiers in physiology*
 Khaledi-Nasab, A., Kromer, J., Tass, P. A.
 2021: 1446

- Chemokinetic Scattering, Trapping, and Avoidance of Active Brownian Particles *Physical Review Letters*
 Kromer, J. A., de la Cruz, N., Friedrich, B. M.
 2020; 124 (11)

- Long-lasting desynchronization by decoupling stimulation *Physical Review Research*
 Kromer, J. A., Tass, P. A.
 2020; 2 (3)
• Impact of number of stimulation sites on long-lasting desynchronization effects of coordinated reset stimulation *CHAOS*
 2020; 30

• Long-Lasting Desynchronization of Plastic Neural Networks by Random Reset Stimulation. *Frontiers in physiology*
 2020; 11: 622620

• Variability of collective dynamics in random tree networks of strongly coupled stochastic excitable elements *PHYSICAL REVIEW E*
 2018; 98 (5)

• General solution of the chemical master equation and modality of marginal distributions for hierarchic first-order reaction networks *JOURNAL OF MATHEMATICAL BIOLOGY*
 Reis, M., Kromer, J. A., Klipp, E.
 2018; 77 (2): 377–419

• Decision making improves sperm chemotaxis in the presence of noise *PLOS COMPUTATIONAL BIOLOGY*
 Kromer, J. A., Maercker, S., Lange, S., Baier, C., Friedrich, B. M.
 2018; 14 (4): e1006109

• Emergent stochastic oscillations and signal detection in tree networks of excitable elements *SCIENTIFIC REPORTS*
 Kromer, J., Khaledi-Nasab, A., Schimansky-Geier, L., Neiman, A. B.
 2017; 7: 3956

• Emergence and coherence of oscillations in star networks of stochastic excitable elements *PHYSICAL REVIEW E*
 Kromer, J. A., Schimansky-Geier, L., Neiman, A. B.
 2016; 93 (4): 042406

• Noise-controlled bistability in an excitable system with positive feedback *EPL*
 Kromer, J. A., Pinto, R. D., Lindner, B., Schimansky-Geier, L.
 2014; 108 (2)

• Event-triggered feedback in noise-driven phase oscillators *PHYSICAL REVIEW E*
 Kromer, J. A., Lindner, B., Schimansky-Geier, L.
 2014; 89 (3): 032138

• Weighted-ensemble Brownian dynamics simulation: Sampling of rare events in nonequilibrium systems *PHYSICAL REVIEW E*
 Kromer, J. A., Schimansky-Geier, L., Toral, R.
 2013; 87 (6): 063311

• Phason-induced dynamics of colloidal particles on quasicrystalline substrates *EUROPEAN PHYSICAL JOURNAL E*
 Kromer, J. A., Schmiedeberg, M., Roth, J., Stark, H.
 2013; 36 (3): 25

• What Phasons Look Like: Particle Trajectories in a Quasicrystalline Potential *PHYSICAL REVIEW LETTERS*
 Kromer, J. A., Schmiedeberg, M., Roth, J., Stark, H.
 2012; 108 (21): 218301