My expertise is in the areas of regeneration, evolution, the nervous system and cell biology. I use a marine colonial tunicate, Botryllus schlosseri, characterized by having robust regenerative capabilities and an assayable and frequent (weekly) CNS (Central nervous system) tissue regeneration and loss throughout adult life. I believe that comparative studies on a simple chordate can help us elucidate the principal mechanisms that are the foundation of regeneration and aging. I use a multidisciplinary methodology that integrates advanced single cell RNAseq, imaging, multi-parameter flow cytometric isolation of cellular populations and transplantation assays to elucidate the cellular and genetic changes associated with neuronal degeneration process in young and old colonies.

STANFORD ADVISORS

- Irving Weissman, Postdoctoral Faculty Sponsor
- Ayelet Voskoboynik, Postdoctoral Research Mentor

Research & Scholarship

LAB AFFILIATIONS

- Irving Weissman (9/1/2019)

Publications

PUBLICATIONS


Sixty years of experimental studies on the blastogenesis of the colonial tunicate Botryllus schlosseri. 
2019; 448 (2): 293–308

A Notch-regulated proliferative stem cell zone in the developing spinal cord is an ancestral vertebrate trait.
Lara-Ramirez, R., Perez-Gonzalez, C., Anselmi, C., Patthey, C., Shimeld, S. M.
2019; 146 (1)

Differentiation and Induced Sensorial Alteration of the Coronal Organ in the Asexual Life of a Tunicate
Manni, L., Anselmi, C., Burighel, P., Martini, M., Gasparini, F.
OXFORD UNIV PRESS INC.2018: 317–28

High-precision morphology: bifocal 4D-microscopy enables the comparison of detailed cell lineages of two chordate species separated for more than 525 million years.
Stach, T., Anselmi, C.
2015; 13: 113