Bio

My research interests are focused on developing and implementing novel beamforming techniques to improve the quality and diagnostic value of ultrasound images. Current projects include improving image quality in difficult-to-image patients, enhancing the sensitivity of molecular contrast-enhanced ultrasound imaging, reducing common artifacts in ultrasound imaging using machine learning-based methods, and the rapid translation of these techniques onto real-time ultrasound imaging systems using GPU-based computing.

Publications

PUBLICATIONS

- **Short-Lag Spatial Coherence Imaging in 1.5-D and 1.75-D Arrays: Elevation Performance and Array Design Considerations**. *IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL*
 Morgan, M. R., Hyun, D., Trahey, G. E.
 2019; 66 (6): 1047–56

- **Beamforming and Speckle Reduction Using Neural Networks**. *IEEE transactions on ultrasonics, ferroelectrics, and frequency control*
 Hyun, D., Brickson, L. L., Looby, K. T., Dahl, J. J.

- **Improved Visualization in Difficult-to-Image Stress Echocardiography Patients Using Real-Time Harmonic Spatial Coherence Imaging**. *IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL*
 Hyun, D., Crowley, A. C., LeFevre, M., Cleve, J., Rosenberg, J., Dahl, J. J.
 2019; 66 (3): 433–41

- **Local speed of sound estimation in tissue using pulse-echo ultrasound: Model-based approach**. *The Journal of the Acoustical Society of America*
 2018; 144 (1): 254

- **CLINICAL UTILITY OF FETAL SHORT-LAG SPATIAL COHERENCE IMAGING**. *ULTRASOUND IN MEDICINE AND BIOLOGY*
 Long, W., Hyun, D., Choudhury, K., Bradway, D., McNally, P., Boyd, B., Ellestad, S., Trahey, G. E.
 2018; 44 (4): 794–806

- **Improved Sensitivity in Ultrasound Molecular Imaging With Coherence-Based Beamforming**. *IEEE transactions on medical imaging*
 2018; 37 (1): 241–50

- **Reverberation Noise Suppression in the Aperture Domain Using 3D Fully Convolutional Neural Networks**
 Brickson, L. L., Hyun, D., Dahl, J. J., IEEE
 IEEE.2018
- High Sensitivity Liver Vasculature Visualization Using a Real-time Coherent Flow Power Doppler (CFPD) Imaging System: A Pilot Clinical Study
 Li, Y., Hyun, D., Durot, I., Willmann, J. K., Dahl, J. J., IEEE
 IEEE.2018

- Adaptive Grayscale Mapping to Improve Molecular Ultrasound Difference Images
 IEEE.2018

- Efficient Strategies for Estimating the Spatial Coherence of Backscatter IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL
 Hyun, D., Crowley, A. L., Dahl, J. J.
 2017; 64 (3): 500-513

- Coherence Beamforming and its Applications to the Difficult-to-Image Patient
 IEEE.2017

- Visualization of Small-Diameter Vessels by Reduction of Incoherent Reverberation With Coherent Flow Power Doppler. IEEE transactions on ultrasonics, ferroelectrics, and frequency control
 Li, Y. L., Hyun, D., Abou-Elkacem, L., Willmann, J. K., Dahl, J. J.
 2016; 63 (11): 1878-1889

- Short-Lag Spatial Coherence Imaging on Matrix Arrays, Part II: Phantom and In Vivo Experiments IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL
 Jakovljevic, M., Byram, B. C., Hyun, D., Dahl, J. J., Trahey, G. E.
 2014; 61 (7): 1113-1122

- Short-Lag Spatial Coherence Imaging on Matrix Arrays, Part I: Beamforming Methods and Simulation Studies IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL
 Hyun, D., Trahey, G. E., Jakovljevic, M., Dahl, J. J.
 2014; 61 (7): 1101-1112

- A GPU-based real-time spatial coherence imaging system
 Hyun, D., Trahey, G. E., Dahl, J., Bosch, J. G., Dooley, M. M.
 SPIE-INT SOC OPTICAL ENGINEERING.2013

- Lesion Detectability in Diagnostic Ultrasound with Short-Lag Spatial Coherence Imaging ULTRASONIC IMAGING
 2011; 33 (2): 119-133

- Development and Evaluation of Pulse Sequences for Freehand ARFI Imaging
 IEEE.2011: 1281–84