My laboratory employs diverse interdisciplinary methods of inquiry to understand the relationships among cell shape detection, determination, and maintenance in bacteria. Cell shape plays a critical role in regulating many physiological functions, yet little is known about how the wide variety of cell shapes are determined and maintained. Inside the cell, many proteins organize and segregate, but how they detect and respond to the cellular morphology to end up at the right place at the right time is also largely mysterious. The group uses a combination of analytical, computational, and experimental approaches to probe physical mechanisms of shape-related self-organization in protein networks, membranes, and the cell wall. Current topics of interest are (i) cell-wall biosynthesis, (ii) the regulation and mechanics of cell division, (iii) membrane organization, and (iv) membrane-mediated protein interactions. Ultimately, the manipulation of cell shape may provide a direct tool for engineering complex cellular behaviors.
LINKS

• Laboratory of Cellular Organization: http://whatislife.stanford.edu/

Research & Scholarship

CURRENT RESEARCH AND SCHOLARLY INTERESTS
We primarily focus on bacteria, in which the exquisite patterning of the interior in both space and time is critical for a wide variety of cellular functions. The wide variety of shapes and sizes that bacteria take on can be used as synthetic environment for studying the establishment of intracellular organization and the cellular response to perturbations in morphology. Ultimately, the manipulation of cell shape may provide a direct tool for engineering complex cellular behaviors.

Currently, we are interested in (i) the role of the cell wall in cell-shape determination, (ii) the regulation and mechanics of the cell cycle and cell division, (iii) the spatial and temporal organization of the membrane, (iv) the role of the membrane in transmembrane-protein interactions and ion channel gating, and (v) collective behavior in bacteria.

Teaching

COURSES

2018-19
• Gut Microbiota in Health and Disease: BIOE 221G, GENE 208, MI 221 (Spr)
• Physical Biology: BIOE 42 (Spr)

2017-18
• Physical Biology: BIOE 42 (Spr)

2016-17
• Advanced Seminar on Prokaryotic Molecular Biology: BIO 346 (Aut)
• Gut Microbiota in Health and Disease: BIOE 221G, MI 221 (Spr)
• Physical Biology of Cells: BIOE 42 (Spr)

2015-16
• Advanced Seminar on Prokaryotic Molecular Biology: BIO 346 (Aut)
• Gut Microbiota in Health and Disease: MI 221 (Spr)
• Physical Biology of Cells: BIOE 42 (Spr)

STANFORD ADVISEES

Doctoral Dissertation Reader (AC)
Colin Comerci, Connie Fung, Cooper Galvin, Bryan Merrill

Postdoctoral Faculty Sponsor
Heidi Arjes, Amanda Miguel, Katharine Ng, Manohary Rajendram, Anthony Shiver

Orals Evaluator
Connie Fung

Doctoral Dissertation Advisor (AC)
Benjamin Knapp, Ilene Magpiong
GRADUATE AND FELLOWSHIP PROGRAM AFFILIATIONS

- Biochemistry (Phd Program)
- Biophysics (Phd Program)
- Microbiology and Immunology (Phd Program)

Publications

PUBLICATIONS

 Desmarais, S., Cava, F., de Pedro, M., Huang, K. C.

- The Gut Microbiome: Connecting Spatial Organization to Function *CELL HOST & MICROBE*
 Tropini, C., Earle, K. A., Huang, K. C., Sonnenburg, J. L.
 2017; 21 (4): 433-442

- Coupling between Protein Stability and Catalytic Activity Determines Pathogenicity of G6PD Variants *CELL REPORTS*
 Cunningham, A. D., Colavin, A., Huang, K. C., Mochly-Rosen, D.
 2017; 18 (11): 2592-2599

- Emergent Phototactic Responses of Cyanobacteria under Complex Light Regimes *MBIO*
 Chau, R. M., Bhaya, D., Huang, K. C.
 2017; 8 (2)

- Rapid, precise quantification of bacterial cellular dimensions across a genomic-scale knockout library. *BMC biology*
 2017; 15 (1): 17-?

- GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. *Science*
 Yang, X., Lyu, Z., Miguel, A., McQuillen, R., Huang, K. C., Xiao, J.
 2017; 355 (6326): 744-747

- Long-term microfluidic tracking of coccoid cyanobacterial cells reveals robust control of division timing *BMC BIOLOGY*
 Yu, F. B., Willis, L., Chau, R. M., Zambon, A., Horowitz, M., Bhaya, D., Huang, K. C., Quake, S. R.
 2017; 15

- Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates. *Nature protocols*
 Shi, H., Colavin, A., Lee, T. K., Huang, K. C.
 2017; 12 (2): 429-438

- A Periplasmic Polymer Curves Vibrio cholerae and Promotes Pathogenesis. *Cell*
 2017; 168 (1-2): 172-185 e15

- Single-molecule imaging reveals modulation of cell wall synthesis dynamics in live bacterial cells *NATURE COMMUNICATIONS*
 Lee, T. K., Meng, K., Shi, H., Huang, K. C.
 2016; 7

- FtsZ-Dependent Elongation of a Coccoid Bacterium *MBIO*
Mechanical Genomics Identifies Diverse Modulators of Bacterial Cell Stiffness. *Cell systems*
Auer, G. K., Lee, T. K., Rajendram, M., Cesar, S., Miguel, A., Huang, K. C., Weibel, D. B.
2016; 2 (6): 402-411

A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria *CELL*
2016; 165 (6): 1493-1506

The effect of microbial colonization on the host proteome varies by gastrointestinal location *ISME JOURNAL*
2016; 10 (5): 1170-1181

Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
2016; 113 (11): E1565-E1574

High-throughput, Highly Sensitive Analyses of Bacterial Morphogenesis Using Ultra Performance Liquid Chromatography *JOURNAL OF BIOLOGICAL CHEMISTRY*
Desmarais, S. M., Tropini, C., Miguel, A., Cava, F., Monds, R. D., de Pedro, M. A., Huang, K. C.
2015; 290 (52): 31090-31100

Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics *BIOPHYSICAL JOURNAL*
Ando, D., Korabel, N., Huang, K. C., Gopinathan, A.
2015; 109 (8): 1574-1582

Quantitative Imaging of Gut Microbiota Spatial Organization *CELL HOST & MICROBE*
2015; 18 (4): 478-488

Applications of imaging for bacterial systems biology *CURRENT OPINION IN MICROBIOLOGY*
Huang, K. C.
2015; 27: 114-120

The bacterial tubulin FtsZ requires its intrinsically disordered linker to direct robust cell wall construction *NATURE COMMUNICATIONS*
Sundararajan, K., Miguel, A., Desmarais, S. M., Meier, E. L., Huang, K. C., Goley, E. D.
2015; 6

Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division *ELIFE*
2015; 4

Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus *SCIENCE*
2015; 348 (6234): 574-578

Bacterial division. Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus. *Science*
2015; 348 (6234): 574-578

Structural basis for the geometry-driven localization of a small protein *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
2015; 112 (15): E1908-E1915

Maintenance of Motility Bias during Cyanobacterial Phototaxis *BIOPHYSICAL JOURNAL*
Variations in the binding pocket of an inhibitor of the bacterial division protein FtsZ across genotypes and species. *PLoS computational biology*
Miguel, A., Hsin, J., Liu, T., Tang, G., Altman, R. B., Huang, K. C.
2015; 11 (3)

Variations in the Binding Pocket of an Inhibitor of the Bacterial Division Protein FtsZ across Genotypes and Species *PLOS COMPUTATIONAL BIOLOGY*
Miguel, A., Hsin, J., Liu, T., Tang, G., Altman, R. B., Huang, K. C.
2015; 11 (3)

The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis. *Molecular biology of the cell*
Zhou, Z., Munteanu, E. L., He, J., Ursell, T., Bathe, M., Huang, K. C., Chang, F.
2015; 26 (1): 78-90

Physics of Intracellular Organization in Bacteria *ANNUAL REVIEW OF MICROBIOLOGY, VOL 69*
Wingreen, N. S., Huang, K. C.
2015; 69: 361-379

Principles of Bacterial Cell-Size Determination Revealed by Cell-Wall Synthesis Perturbations *CELL REPORTS*
2014; 9 (4): 1520-1527

Systematic Perturbation of Cytoskeletal Function Reveals a Linear Scaling Relationship between Cell Geometry and Fitness *CELL REPORTS*
Monds, R. D., Lee, T. K., Colavin, A., Ursell, T., Quan, S., Cooper, T. F., Huang, K. C.
2014; 9 (4): 1528-1537

De novo morphogenesis in L-forms via geometric control of cell growth. *Molecular microbiology*
Billings, G., Ouzounov, N., Ursell, T., Desmarais, S. M., Shaevitz, J., Gitai, Z., Huang, K. C.
2014; 93 (5): 883-896

How and why cells grow as rods *BMC BIOLOGY*
Chang, F., Huang, K. C.
2014; 12

Response of Escherichia coli growth rate to osmotic shock *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
Rojas, E., Theriot, J. A., Huang, K. C.
2014; 111 (21): 7807-7812

A dynamically assembled cell wall synthesis machinery buffers cell growth. *Proceedings of the National Academy of Sciences of the United States of America*
2014; 111 (12): 4554-4559

Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. *Proceedings of the National Academy of Sciences of the United States of America*
2014; 111 (11): E1025-34

Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
2014; 111 (11): E1025-E1034

Effects of polymerization and nucleotide identity on the conformational dynamics of the bacterial actin homolog MreB. *Proceedings of the National Academy of Sciences of the United States of America*
Colavin, A., Hsin, J., Huang, K. C.
2014; 111 (9): 3585-3590

Isolation and preparation of bacterial cell walls for compositional analysis by ultra performance liquid chromatography. *Journal of visualized experiments: JoVE*

Desmarais, S. M., Cava, F., de Pedro, M. A., Huang, K. C.
2014

• The role of hydrolases in bacterial cell-wall growth. *Current opinion in microbiology*
 Lee, T. K., Huang, K. C.
 2013; 16 (6): 760-766

• Dimer Dynamics and Filament Organization of the Bacterial Cell Division Protein FtsA. *Journal of molecular biology*
 Hsin, J., Fu, R., Huang, K. C.
 2013; 425 (22): 4415-4426

• Motility Enhancement through Surface Modification Is Sufficient for Cyanobacterial Community Organization during Phototaxis. *PLoS computational biology*
 Ursell, T., Chau, R. M., Wisen, S., Bhaya, D., Huang, K. C.
 2013; 9 (9)

• FtsZ Protofilaments Use a Hinge-Opening Mechanism for Constrictive Force Generation *SCIENCE*
 Li, Y., Hsin, J., Zhao, L., Cheng, Y., Shang, W., Huang, K. C., Wang, H., Ye, S.
 2013; 341 (6144): 392-395

• Peptidoglycan at its peaks: how chromatographic analyses can reveal bacterial cell wall structure and assembly. *Molecular microbiology*
 Desmarais, S. M., de Pedro, M. A., Cava, F., Huang, K. C.
 2013; 89 (1): 1-13

• Optimal Dynamics for Quality Control in Spatially Distributed Mitochondrial Networks *PLOS COMPUTATIONAL BIOLOGY*
 Patel, P. K., Shirihai, O., Huang, K. C.
 2013; 9 (7)

• Design of High-Specificity Nanocarriers by Exploiting Non-Equilibrium Effects in Cancer Cell Targeting *PLOS ONE*
 Tsekouras, K., Goncharenko, I., Colvin, M. E., Huang, K. C., Gopinathan, A.
 2013; 8 (6)

• Mechanical consequences of cell-wall turnover in the elongation of a gram-positive bacterium. *Biophysical journal*
 2013; 104 (11): 2342-2352

• Motility enhancement through surface modification is sufficient for cyanobacterial community organization during phototaxis. *PLoS computational biology*
 Ursell, T., Chau, R. M., Wisen, S., Bhaya, D., Huang, K. C.
 2013; 9 (9)

• The role of hydrolases in bacterial cell-wall growth *CurrOpinMicrobiol*
 Lee, T. K., Huang, K. C.
 2013; 16: xx-yy

• Multiple conformations of FtsZ protofilaments provide structural insight into mechanisms of bacterial cytokinesis *Science*
 2013; 341: 392-395

• Biological Consequences and Advantages of Asymmetric Bacterial Growth *ANNUAL REVIEW OF MICROBIOLOGY, VOL 67*
 Kysela, D. T., Brown, P. J., Huang, K. C., Brun, Y. V.
 2013; 67: 417-435

• Optimal Nanocarrier Design for Cancer Cell Targeting *PloS One*
 Tsekouras, K., Goncharenko, I., Colvin, M., Huang, K. C., Gopinathan, A.
 2013; 8: e65623

• Physiological role of FtsA polymerization during bacterial cell division *J MolBiol*
 Hsin, J., Fu, R., Huang, K. C.
 2013; 425: 4415-4426
• The molecular origins of chiral growth in walled cells CURRENT OPINION IN MICROBIOLOGY
 Huang, K. C., Ehrhardt, D. W., Shaevitz, J. W.
 2012; 15 (6): 707-714

• Analysis of Surface Protein Expression Reveals the Growth Pattern of the Gram-Negative Outer Membrane PLOS COMPUTATIONAL BIOLOGY
 Ursell, T. S., Trepagnier, E. H., Huang, K. C., Theriot, J. A.
 2012; 8 (9)

• Physical constraints on the establishment of intracellular spatial gradients in bacteria BMC BIOPHYSICS
 Tropini, C., Rabhani, N., Huang, K. C.
 2012; 5

• Interplay between the Localization and Kinetics of Phosphorylation in Flagellar Pole Development of the Bacterium Caulobacter crescentus PLOS COMPUTATIONAL BIOLOGY
 Tropini, C., Huang, K. C.
 2012; 8 (8)

• Posttranslational Acetylation of alpha-Tubulin Constrains Protofilament Number in Native Microtubules CURRENT BIOLOGY
 Cueva, J. G., Hsin, J., Huang, K. C., Goodman, M. B.
 2012; 22 (12): 1066-1074

• Nucleotide-dependent conformations of FtsZ dimers and force generation observed through molecular dynamics simulations PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
 Hsin, J., Gopinathan, A., Huang, K. C.
 2012; 109 (24): 9432-9437

• Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity MOLECULAR MICROBIOLOGY
 2012; 84 (5): 874-891

• Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
 Wang, S., Furchtgott, L., Huang, K. C., Shaevitz, J. W.
 2012; 109 (10): E595-E604

• Alpha Tubulin Acetylation Regulates Protofilament Number in Native Microtubules Curr Biol
 Cueva, J., Hsin, J., Huang, K. C., Goodman, M.
 2012; 22: 1066-1074

• Conformational changes, diffusion and collective behavior in monomeric kinesin-based motility JOURNAL OF PHYSICS-CONDENSED MATTER
 Huang, K. C., Vega, C., Gopinathan, A.
 2011; 23 (37)

• The bacterial actin MreB rotates, and rotation depends on cell-wall assembly PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
 van Teeffelen, S., Wang, S., Furchtgott, L., Huang, K. C., Wingreen, N. S., Shaevitz, J. W., Gitai, Z.
 2011; 108 (38): 15822-15827

• Does the Potential for Chaos Constrain the Embryonic Cell-Cycle Oscillator? PLOS COMPUTATIONAL BIOLOGY
 McIsaac, R. S., Huang, K. C., Sengupta, A., Wingreen, N. S.
 2011; 7 (7)

• Mechanisms for maintaining cell shape in rod-shaped Gram-negative bacteria MOLECULAR MICROBIOLOGY
 Furchtgott, L., Wingreen, N. S., Huang, K. C.
 2011; 81 (2): 340-353

• Mechanics of membrane bulging during cell-wall disruption in Gram-negative bacteria PHYSICAL REVIEW E
 Daly, K. E., Huang, K. C., Wingreen, N. S., Mukhopadhyay, R.
 2011; 83 (4)
• Bilayer-Mediated Clustering and Functional Interaction of MscL Channels *BIOPHYSICAL JOURNAL*
2011; 100 (5): 1252-1260

• Mechanisms for Maintaining Cell-Shape in Rod-Shaped Gram-Negative Bacteria *55th Annual Meeting of the Biophysical-Society*
Furhgtott, L., Wingreen, N. S., Huang, K. C.
CELL PRESS.2011: 514–14

• Spatial gradient of protein phosphorylation underlies replicative asymmetry in a bacterium *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
Chen, Y. E., Tropini, C., Jonas, K., Tsokos, C. G., Huang, K. C., Laub, M. T.
2011; 108 (3): 1052-1057

• Entropy-driven translocation of an unstructured protein through the Gram-positive cell wall. *Annual Meeting of the American-Society-for-Cell-Biology (ASCB)*
Halladin, D. K., Huang, K. C., Gopinathan, A., Theriot, J. A.
AMER SOC CELL BIOLOGY.2011

• Resolution limits of optical microscopy and the mind *Biomed Comp Rev*
Usrell, T. S., Huang, K. C.
2011; 7: 27

• Clustering and functional interaction of MscL channels *Biophys. J.*
2011; 100: 1252-1260

• A spatial gradient of protein phosphorylation underlies replicative asymmetry in a bacterium *Proc Nat Acadsci USA. Selected for Feb 1, 2011 issue of Virtual Journal of Biological Physics Research.*
Chen, Y. E., Tropini, C., Huang, K. C., Laub, M. T.
2011; 108: 1052-1057

Daly, K. E., Huang, K. C., Wingreen, N. S., Mukhopadhyay, R.
2011; 83: 041922

• Dynamic SpoIII E assembly mediates septal membrane fission during Bacillus subtilis sporulation *GENES & DEVELOPMENT*
Fleming, T. C., Shin, J. Y., Lee, S., Becker, E., Huang, K. C., Bustamante, C., Pogliano, K.
2010; 24 (11): 1160-1172

• Macromolecules that prefer their membranes curvy *MOLECULAR MICROBIOLOGY*
Huang, K. C., Ramamurthi, K. S.
2010; 76 (4): 822-832

• SpoIII assembly mediates septal membrane fission during Bacillus subtilis sporulation *Genes and Development*
Fleming, T., Becker, E., Lee, S., Shin, J. Y., Huang, K. C., Bustamante, C.
2010; 24: 1160

• Cell shape and cell-wall organization in Gram-negative bacteria *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
Huang, K. C., Mukhopadhyay, R., Wen, B., Gitai, Z., Wingreen, N. S.
2008; 105 (49): 19282-19287

• Lipid localization in bacterial cells through curvature-mediated microphase separation *BIOPHYSICAL JOURNAL*
Mukhopadhyay, R., Huang, K. C., Wingreen, N. S.
2008; 95 (3): 1034-1049

• The Min system as a general cell-geometry detection mechanism: patterns of Min oscillations respond to changes in cell shape in aberrantly shaped Escherichia coli *J. Bacteriol*
Varma, A., Huang, K. C., Young, K. D.
2008; 190: 2106

- Cooperative gating and spatial organization of membrane proteins through elastic interactions PLOS COMPUTATIONAL BIOLOGY
 Ursell, T., Huang, K. C., Peterson, E., Phillips, R.
 2007; 3 (5): 803-812

- Control of melting using nanoscale coatings
 Huang, K. C., Wang, T., Joannopoulos, J. D.
 2007

 Ursell, T., Huang, K. C., Peterson, E., Phillips, R.
 2007; 3: e81

- A curvature-mediated mechanism for localization of lipids to bacterial poles PLOS COMPUTATIONAL BIOLOGY
 Huang, K. C., Mukhopadhyay, R., Wingreen, N. S.
 2006; 2 (11): 1357-1364

- Nanoscale properties of melting at the surface of semiconductors PHYSICAL REVIEW B
 Huang, K. C., Wang, T., Joannopoulos, J. D.
 2005; 72 (19)

- Photonic band gaps and localization in the Thue-Morse structures APPLIED PHYSICS LETTERS
 Jiang, X. Y., Zhang, Y. G., Feng, S. L., Huang, K. C., Yi, Y. H., Joannopoulos, J. D.
 2005; 86 (20)

- Superheating and induced melting at semiconductor interfaces PHYSICAL REVIEW LETTERS
 Huang, K. C., Wang, T., Joannopoulos, J. D.
 2005; 94 (17)

 Jiang, X., Zhang, Y., Feng, S., Huang, K. C., Yi, Y., Joannopoulos, J. D.
 2005; 86: 201110

- Min-protein oscillations in round bacteria PHYSICAL BIOLOGY
 Huang, K. C., Swingreen, N. S.
 2004; 1 (4): 229-235

- Pattern formation within Escherichia coli: Diffusion, membrane attachment, and self-interaction of MinD molecules PHYSICAL REVIEW LETTERS
 Kulkarni, R. V., Huang, K. C., Kloster, M., Wingreen, N. S.
 2004; 93 (22)

- Negative effective permeability in polaritonic photonic crystals APPLIED PHYSICS LETTERS
 Huang, K. C., Povinelli, M. L., Joannopoulos, J. D.
 2004; 85 (4): 543-545

- Nature of lossy Bloch states in polaritonic photonic crystals PHYSICAL REVIEW B
 2004; 69 (19)

 Kulkarni, R. V., Huang, K. C., Kloster, M., Wingreen, N. S.
 2004; 93: 228103

 Huang, K. C., Lidorikis, E., Jiang, X., Joannopoulos, J. D., Nelson, K. A., Bienstman, P.
 2004; B 69: 195111
• Dynamic structures in Escherichia coli: Spontaneous formation of MinE rings and MinD polar zones. *Proceedings of the National Academy of Sciences of the United States of America*
 Huang, K. C., Meir, Y., Wingreen, N. S.
 2003; 100 (22): 12724-12728

• Phonon-polariton excitations in photonic crystals. *Physical Review B*
 Huang, K. C., Bienstman, P., Joannopoulos, J. D., Nelson, K. A., Fan, S.
 2003; 68 (7)

• Field expulsion and reconfiguration in polaritonic photonic crystals. *Physical Review Letters*
 2003; 90 (19)

• Comment on "Quantum Monte Carlo study of the dipole moment of CO". *J. Chem. Phys.*
 Huang, K. C., Needs, R. J., Rajagopal, G.
 1999, 2000; 110, 112: 11700, 4419