My laboratory employs diverse interdisciplinary methods of inquiry to understand the relationships among cell shape detection, determination, and maintenance in bacteria. Cell shape plays a critical role in regulating many physiological functions, yet little is known about how the wide variety of cell shapes are determined and maintained. Inside the cell, many proteins organize and segregate, but how they detect and respond to the cellular morphology to end up at the right place at the right time is also largely mysterious. The group uses a combination of analytical, computational, and experimental approaches to probe physical mechanisms of shape-related self-organization in protein networks, membranes, and the cell wall. Current topics of interest are (i) cell-wall biosynthesis, (ii) the regulation and mechanics of cell division, (iii) membrane organization, and (iv) membrane-mediated protein interactions. Ultimately, the manipulation of cell shape may provide a direct tool for engineering complex cellular behaviors.
LINKS

• Laboratory of Cellular Organization: http://whatislife.stanford.edu/

Research & Scholarship

CURRENT RESEARCH AND SCHOLARLY INTERESTS

We primarily focus on bacteria, in which the exquisite patterning of the interior in both space and time is critical for a wide variety of cellular functions. The wide variety of shapes and sizes that bacteria take on can be used as synthetic environment for studying the establishment of intracellular organization and the cellular response to perturbations in morphology. Ultimately, the manipulation of cell shape may provide a direct tool for engineering complex cellular behaviors.

Currently, we are interested in (i) the role of the cell wall in cell-shape determination, (ii) the regulation and mechanics of the cell cycle and cell division, (iii) the spatial and temporal organization of the membrane, (iv) the role of the membrane in transmembrane-protein interactions and ion channel gating, and (v) collective behavior in bacteria.

Teaching

COURSES

2019-20
• Physical Biology: BIOE 42 (Spr)

2017-18
• Physical Biology: BIOE 42 (Spr)

2016-17
• Advanced Seminar on Prokaryotic Molecular Biology: BIO 346 (Aut)
• Gut Microbiota in Health and Disease: BIOE 221G, MI 221 (Spr)
• Physical Biology of Cells: BIOE 42 (Spr)

STANFORD ADVISEES

Doctoral Dissertation Reader (AC)
Katie Bodner, Heejo Choi, Bryan Merrill, Kali Pruss, Tim Schnabel, Will Van Treuren

Postdoctoral Faculty Sponsor
Heidi Arjes, Po-Yi Ho, Manohary Rajendram, Anthony Shiver

Doctoral Dissertation Advisor (AC)
Andres Aranda-Diaz, Esha Atolia, Spencer Cesar, Rebecca Culver, Ben Knapp, Kim Vasquez

Postdoctoral Research Mentor
Heidi Arjes, Manohary Rajendram

Doctoral (Program)
Rafi Ayub, Phillip DiGiacomo, Thomas Lozanoski, Caitlin Maikawa, Taylor Nguyen, Sam Vesuna, Linfeng Yang

GRADUATE AND FELLOWSHIP PROGRAM AFFILIATIONS

• Biochemistry (Phd Program)
• Biophysics (Phd Program)
• Microbiology and Immunology (Phd Program)

Publications

PUBLICATIONS

- **Isolation and preparation of bacterial cell walls for Ultra-Performance Liquid Chromatography** in *press, J Vis Exp.*
 Desmarais, S., Cava, F., de Pedro, M., Huang, K. C.

- **The Gut Microbiome: Connecting Spatial Organization to Function** *CELL HOST & MICROBE*
 Tropini, C., Earle, K. A., Huang, K. C., Sonnenburg, J. L.
 2017; 21 (4): 433-442

- **Coupling between Protein Stability and Catalytic Activity Determines Pathogenicity of G6PD Variants** *CELL REPORTS*
 Cunningham, A. D., Colavin, A., Huang, K. C., Mochly-Rosen, D.
 2017; 18 (11): 2592-2599

- **Emergent Phototactic Responses of Cyanobacteria under Complex Light Regimes** *MBIO*
 Chau, R. M., Bhaya, D., Huang, K. C.
 2017; 8 (2)

- **Rapid, precise quantification of bacterial cellular dimensions across a genomic-scale knockout library.** *BMC biology*
 2017; 15 (1): 17-?

- **GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis.** *Science*
 Yang, X., Lyu, Z., Miguel, A., McQuillen, R., Huang, K. C., Xiao, J.
 2017; 355 (6326): 744-747

- **Long-term microfluidic tracking of coccoid cyanobacterial cells reveals robust control of division timing** *BMC BIOLOGY*
 Yu, F. B., Willis, L., Chau, R. M., Zambon, A., Horowitz, M., Bhaya, D., Huang, K. C., Quake, S. R.
 2017; 15

- **Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates.** *Nature protocols*
 Shi, H., Colavin, A., Lee, T. K., Huang, K. C.
 2017; 12 (2): 429-438

- **A Periplasmic Polymer Curves Vibrio cholerae and Promotes Pathogenesis.** *Cell*
 2017; 168 (1-2): 172-185 e15

- **Single-molecule imaging reveals modulation of cell wall synthesis dynamics in live bacterial cells** *NATURE COMMUNICATIONS*
 Lee, T. K., Meng, K., Shi, H., Huang, K. C.
 2016; 7

- **FtsZ-Dependent Elongation of a Coccoid Bacterium** *MBIO*
 2016; 7 (5)

- **Mechanical Genomics Identifies Diverse Modulators of Bacterial Cell Stiffness.** *Cell systems*
 Auer, G. K., Lee, T. K., Rajendram, M., Cesar, S., Miguel, A., Huang, K. C., Weibel, D. B.
 2016; 2 (6): 402-411

- **A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria** *CELL*
• The effect of microbial colonization on the host proteome varies by gastrointestinal location. *ISME Journal*
 2016; 10 (5): 1170-1181

• Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway. *Proceedings of the National Academy of Sciences of the United States of America*
 2016; 113 (11): E1565-E1574

• High-throughput, Highly Sensitive Analyses of Bacterial Morphogenesis Using Ultra Performance Liquid Chromatography. *Journal of Biological Chemistry*
 Desmarais, S. M., Tropini, C., Miguel, A., Cava, F., Monds, R. D., de Pedro, M. A., Huang, K. C.
 2015; 290 (52): 31090-31100

• Applications of imaging for bacterial systems biology. *Current Opinion in Microbiology*
 Huang, K. C.
 2015; 27: 114-120

• Variations in the binding pocket of an inhibitor of the bacterial division protein FtsZ across genotypes and species. *PLoS Computational Biology*
 Miguel, A., Hsin, J., Liu, T., Tang, G., Altman, R. B., Huang, K. C.
 2015; 11 (3)
2015; 11 (3)

• The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis. Molecular biology of the cell
Zhou, Z., Munteanu, E. L., He, J., Ursell, T., Bathe, M., Huang, K. C., Chang, F.
2015; 26 (1): 78-90

• Physics of Intracellular Organization in Bacteria ANNUAL REVIEW OF MICROBIOLOGY, VOL 69
Wingreen, N. S., Huang, K. C.
2015; 69: 361-379

• Principles of Bacterial Cell-Size Determination Revealed by Cell-Wall Synthesis Perturbations CELL REPORTS
2014; 9 (4): 1520-1527

• Systematic Perturbation of Cytoskeletal Function Reveals a Linear Scaling Relationship between Cell Geometry and Fitness CELL REPORTS
Monds, R. D., Lee, T. K., Colavin, A., Ursell, T., Quan, S., Cooper, T. F., Huang, K. C.
2014; 9 (4): 1528-1537

• De novo morphogenesis in L-forms via geometric control of cell growth. Molecular microbiology
Billings, G., Ouzounov, N., Ursell, T., Desmarais, S. M., Shaevitz, J., Gitai, Z., Huang, K. C.
2014; 93 (5): 883-896

• How and why cells grow as rods BMC BIOLOGY
Chang, F., Huang, K. C.
2014; 12

• Response of Escherichia coli growth rate to osmotic shock PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Rojas, E., Theriot, J. A., Huang, K. C.
2014; 111 (21): 7807-7812

• A dynamically assembled cell wall synthesis machinery buffers cell growth. Proceedings of the National Academy of Sciences of the United States of America
2014; 111 (12): 4554-4559

• Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proceedings of the National Academy of Sciences of the United States of America
2014; 111 (11): E1025-34

• Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
2014; 111 (11): E1025-E1034

• Effects of polymerization and nucleotide identity on the conformational dynamics of the bacterial actin homolog MreB. Proceedings of the National Academy of Sciences of the United States of America
Colavin, A., Hsin, J., Huang, K. C.
2014; 111 (9): 3585-3590

• Isolation and preparation of bacterial cell walls for compositional analysis by ultra performance liquid chromatography. Journal of visualized experiments : JoVE
Desmarais, S. M., Cava, F., de Pedro, M. A., Huang, K. C.
2014

• The role of hydrolases in bacterial cell-wall growth. Current opinion in microbiology
Lee, T. K., Huang, K. C.
2013; 16 (6): 760-766

• Dimer Dynamics and Filament Organization of the Bacterial Cell Division Protein FtsA. Journal of molecular biology
Hsin, J., Fu, R., Huang, K. C.
Motility Enhancement through Surface Modification Is Sufficient for Cyanobacterial Community Organization during Phototaxis. *PLoS computational biology*
Ursell, T., Chau, R. M., Wisen, S., Bhaya, D., Huang, K. C.
2013; 9 (9)

FtsZ Protofilaments Use a Hinge-Opening Mechanism for Constrictive Force Generation *SCIENCE*
Li, Y., Hsin, J., Zhao, L., Cheng, Y., Shang, W., Huang, K. C., Wang, H., Ye, S.
2013; 341 (6144): 392-395

Peptidoglycan at its peaks: how chromatographic analyses can reveal bacterial cell wall structure and assembly. *Molecular microbiology*
Desmarais, S. M., de Pedro, M. A., Cava, F., Huang, K. C.
2013; 89 (1): 1-13

Optimal Dynamics for Quality Control in Spatially Distributed Mitochondrial Networks *PLOS COMPUTATIONAL BIOLOGY*
Patel, P. K., Shirihai, O., Huang, K. C.
2013; 9 (7)

Design of High-Specificity Nanocarriers by Exploiting Non-Equilibrium Effects in Cancer Cell Targeting *PLOS ONE*
Tsekouras, K., Goncharenko, I., Colvin, M. E., Huang, K. C., Gopinathan, A.
2013; 8 (6)

Mechanical consequences of cell-wall turnover in the elongation of a gram-positive bacterium. *Biophysical journal*
2013; 104 (11): 2342-2352

Motility enhancement through surface modification is sufficient for cyanobacterial community organization during phototaxis. *PLoS computational biology*
Ursell, T., Chau, R. M., Wisen, S., Bhaya, D., Huang, K. C.
2013; 9 (9)

The role of hydrolases in bacterial cell-wall growth *CurrOpinMicrobiol*
Lee, T. K., Huang, K. C.
2013; 16: xx-yy

Multiple conformations of FtsZ protofilaments provide structural insight into mechanisms of bacterial cytokinesis *Science*
2013; 341: 392-395

Biological Consequences and Advantages of Asymmetric Bacterial Growth *ANNUAL REVIEW OF MICROBIOLOGY, VOL 67*
Kysela, D. T., Brown, P. J., Huang, K. C., Brun, Y. V.
2013; 67: 417-435

Optimal Nanocarrier Design for Cancer Cell Targeting *PloS One*
Tsekouras, K., Goncharenko, I., Colvin, M., Huang, K. C., Gopinathan, A.
2013; 8: e65623

Physiological role of FtsA polymerization during bacterial cell division *J MolBiol*
Hsin, J., Fu, R., Huang, K. C.
2013; 425: 4415-4426

The molecular origins of chiral growth in walled cells *CURRENT OPINION IN MICROBIOLOGY*
Huang, K. C., Ehrhardt, D. W., Shaevitz, J. W.
2012; 15 (6): 707-714

Analysis of Surface Protein Expression Reveals the Growth Pattern of the Gram-Negative Outer Membrane *PLOS COMPUTATIONAL BIOLOGY*
Ursell, T. S., Trepagnier, E. H., Huang, K. C., Theriot, J. A.
2012; 8 (9)

Physical constraints on the establishment of intracellular spatial gradients in bacteria *BMC BIOPHYSICS*
Tropini, C., Rabbani, N., Huang, K. C.
• Interplay between the Localization and Kinetics of Phosphorylation in Flagellar Pole Development of the Bacterium Caulobacter crescentus. *PLOS COMPUTATIONAL BIOLOGY*
 Tropini, C., Huang, K. C.
 2012; 8 (8)

• Posttranslational Acetylation of alpha-Tubulin Constrains Protofilament Number in Native Microtubules. *CURRENT BIOLOGY*
 Cueva, J. G., Hsin, J., Huang, K. C., Goodman, M. B.
 2012; 22 (12): 1066-1074

• Nucleotide-dependent conformations of FtsZ dimers and force generation observed through molecular dynamics simulations. *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 Hsin, J., Gopinathan, A., Huang, K. C.
 2012; 109 (24): 9432-9437

• Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity. *MOLECULAR MICROBIOLOGY*
 2012; 84 (5): 874-891

• Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall. *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 Wang, S., Furchtgott, L., Huang, K. C., Shaevitz, J. W.
 2012; 109 (10): E595-E604

• Alpha Tubulin Acetylation Regulates Protofilament Number in Native Microtubules. *Curr Biol*
 Cueva, J., Hsin, J., Huang, K. C., Goodman, M.
 2012; 22: 1066-1074

• Conformational changes, diffusion and collective behavior in monomeric kinesin-based motility. *JOURNAL OF PHYSICS-CONDENSED MATTER*
 Huang, K. C., Vega, C., Gopinathan, A.
 2011; 23 (37)

• The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 van Teeffelen, S., Wang, S., Furchtgott, L., Huang, K. C., Wingreen, N. S., Shaevitz, J. W., Gitai, Z.
 2011; 108 (38): 15822-15827

• Does the Potential for Chaos Constrain the Embryonic Cell-Cycle Oscillator? *PLOS COMPUTATIONAL BIOLOGY*
 McIsaac, R. S., Huang, K. C., Sengupta, A., Wingreen, N. S.
 2011; 7 (7)

• Mechanisms for maintaining cell shape in rod-shaped Gram-negative bacteria. *MOLECULAR MICROBIOLOGY*
 Furchtgott, L., Wingreen, N. S., Huang, K. C.
 2011; 81 (2): 340-353

• Mechanics of membrane bulging during cell-wall disruption in Gram-negative bacteria. *PHYSICAL REVIEW E*
 Daly, K. E., Huang, K. C., Wingreen, N. S., Mukhopadhyay, R.
 2011; 83 (4)

• Bilayer-Mediated Clustering and Functional Interaction of MscL Channels. *BIOPHYSICAL JOURNAL*
 2011; 100 (5): 1252-1260

• Mechanisms for Maintaining Cell-Shape in Rod-Shaped Gram-Negative Bacteria. *55th Annual Meeting of the Biophysical-Society*
 Furchtgott, L., Wingreen, N. S., Huang, K. C.
 CELL PRESS.2011: 514–14

• Spatial gradient of protein phosphorylation underlies replicative asymmetry in a bacterium. *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*

- Entropy-driven translocation of an unstructured protein through the Gram-positive cell wall. *Annual Meeting of the American-Society-for-Cell-Biology (ASCB)*
 Halladin, D. K., Huang, K. C., Gopinathan, A., Theriot, J. A.
 AMER SOC CELL BIOLOGY.2011

- Resolution limits of optical microscopy and the mind *Biomed Comp Rev*
 Usreil, T. S., Huang, K. C.
 2011; 7: 27

- Clustering and functional interaction of MscL channels *Biophys. J.*
 2011; 100: 1252-1260

 Chen, Y. E., Tropini, C., Huang, K. C., Laub, M. T.
 2011; 108: 1052-1057

 Daly, K. E., Huang, K. C., Wingreen, N. S., Mukhopadhyay, R.
 2011; 83: 041922

- Dynamic SpoIIIE assembly mediates septal membrane fission during Bacillus subtilis sporulation *GENES & DEVELOPMENT*
 Fleming, T. C., Shin, J. Y., Lee, S., Becker, E., Huang, K. C., Bustamante, C., Pogliano, K.
 2010; 24 (11): 1160-1172

- Macromolecules that prefer their membranes curvy *MOLECULAR MICROBIOLOGY*
 Huang, K. C., Ramamurthi, K. S.
 2010; 76 (4): 822-832

- SpoIIIIE assembly mediates septal membrane fission during Bacillus subtilis sporulation *Genes and Development*
 Fleming, T., Becker, E., Lee, S., Shin, J. Y., Huang, K. C., Bustamante, C.
 2010; 24: 1160

- Cell shape and cell-wall organization in Gram-negative bacteria *PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA*
 Huang, K. C., Mukhopadhyay, R., Wen, B., Gitai, Z., Wingreen, N. S.
 2008; 105 (49): 19282-19287

- Lipid localization in bacterial cells through curvature-mediated microphase separation *BIOPHYSICAL JOURNAL*
 Mukhopadhyay, R., Huang, K. C., Wingreen, N. S.
 2008; 95 (3): 1034-1049

- The Min system as a general cell-geometry detection mechanism: patterns of Min oscillations respond to changes in cell shape in aberrantly shaped Escherichia coli *J. Bacteriol*
 Varma, A., Huang, K. C., Young, K. D.
 2008; 190: 2106

- Cooperative gating and spatial organization of membrane proteins through elastic interactions *PLOS COMPUTATIONAL BIOLOGY*
 Ursell, T., Huang, K. C., Peterson, E., Phillips, R.
 2007; 3 (5): 803-812

- Control of melting using nanoscale coatings
 Huang, K. C., Wang, T., Ioannopoulos, J. D.
 2007

- Cooperative gating and spatial organization of membrane proteins through elastic interactions *PLoS Comp. Biol.*
Ursell, T., Huang, K. C., Peterson, E., Phillips, R.
2007; 3: e81

- A curvature-mediated mechanism for localization of lipids to bacterial poles. *PLOS Computational Biology*
 Huang, K. C., Mukhopadhyay, R., Wingreen, N. S.
 2006; 2 (11): 1357-1364

- Nanoscale properties of melting at the surface of semiconductors. *Physical Review B*
 Huang, K. C., Wang, T., Joannopoulos, J. D.
 2005; 72 (19)

- Photonic band gaps and localization in the Thue-Morse structures. *Applied Physics Letters*
 Jiang, X. Y., Zhang, Y. G., Feng, S. L., Huang, K. C., Yi, Y. H., Joannopoulos, J. D.
 2005; 86 (20)

- Superheating and induced melting at semiconductor interfaces. *Physical Review Letters*
 Huang, K. C., Wang, T., Joannopoulos, J. D.
 2005; 94 (17)

 Jiang, X., Zhang, Y., Feng, S., Huang, K. C., Yi, Y., Joannopoulos, J. D.
 2005; 86: 201110

- Min-protein oscillations in round bacteria. *Physical Biology*
 Huang, K. C., Swingreen, N. S.
 2004; 1 (4): 229-235

- Pattern formation within Escherichia coli: Diffusion, membrane attachment, and self-interaction of MinD molecules. *Physical Review Letters*
 Kulkarni, R. V., Huang, K. C., Kloster, M., Wingreen, N. S.
 2004; 93 (22)

- Negative effective permeability in polariton photonic crystals. *Applied Physics Letters*
 Huang, K. C., Povinelli, M. L., Joannopoulos, J. D.
 2004; 85 (4): 543-545

 2004; 69 (19)

 Kulkarni, R. V., Huang, K. C., Kloster, M., Wingreen, N. S.
 2004; 93: 228103

 Huang, K. C., Lidorikis, E., Jiang, X., Joannopoulos, J. D., Nelson, K. A., Bienstman, P.
 2004; B 69: 195111

- Dynamic structures in Escherichia coli: Spontaneous formation of MinE rings and MinD polar zones. *Proceedings of the National Academy of Sciences of the United States of America*
 Huang, K. C., Meir, Y., Wingreen, N. S.
 2003; 100 (22): 12724-12728

- Phonon-polariton excitations in photonic crystals. *Physical Review B*
 Huang, K. C., Bienstman, P., Joannopoulos, J. D., Nelson, K. A., Fan, S.
 2003; 68 (7)

- Field expulsion and reconfiguration in polariton photonic crystals. *Physical Review Letters*
• Comment on "Quantum Monte Carlo study of the dipole moment of CO" J. Chem. Phys.
Huang, K. C., Needs, R. J., Rajagopal, G.
1999, 2000; 110, 112: 11700, 4419