
CME 304 Project, Winter 2016 Rahul Sarkar

NUMERICAL OPTIMIZATION PROJECT

CME 304, WINTER QUARTER 2016

1 The Problem Statement

Enclose an ellipse with N rectangles so as to minimize the area between the ellipse and
the rectangles.

In this project, we implement a computer program that solves the optimization problem
stated above. The problem as stated above in its full generality is extremely hard to
solve and hence we will solve a simpler version of the problem, which will be discussed.
We will study several aspects of the optimization routine, for e.g how the choice of the
descent direction impacts its performance, performance dependence on the choice of
the linesearch algorithm, runtime dependence on the number of rectangles N and many
more. Finally, we will also study a more general version of the problem, where we try
to enclose different super-ellipses with rectangles.

2 Setting Up The Optimization Problem

We begin by defining the optimization problem mathematically and setting up a carte-
sian coordinate system that allows us to study it easily. Next, we briefly discuss the
problem in the general case and why it is difficult to solve, and introduce certain as-
sumptions that lead to an easier problem. It will be seen that this simpler problem can
be further reduced to the solution of the optimization problem, where the ellipse is the
unit circle.

2.1 Choice of the coordinate system
Y

Figure 1: Ellipse and the coordinate system

Let us consider an ellipse with semi-major
axis a and semi-minor axis b. For our
convenience, we will study the problem in
a cartesian coordinate system and choose
the coordinate axes to be parallel to the
axes of the ellipse, and the origin to be
coincident with the center of the ellipse.
This is depicted in Figure 1. Hence, with
our choice of the coordinate system, the
equation of the ellipse is given by:

x2

a2
+
y2

b2
= 1; a ≥ b > 0 (1)

1

CME 304 Project, Winter 2016 Rahul Sarkar

2.2 The optimization problem in the general case

The optimization problem in the general case involves finding a configuration of N
rectangles that completely encloses the ellipse, i.e any point inside or on the ellipse in
Figure 1 is contained inside atleast one rectangle, such that the configuration minimizes
the area outside the ellipse. The optimization problem posed in this broad general form
does not impose any restrictions on the orientation of the rectangles with respect to
the ellipse or to each other. It also does not impose any restrictions on whether the
rectangles can overlap with each other or not. For example, for N = 2, we depict two
possible configurations of rectangles that completely enclose the ellipse in Figures 2 (a)
and (b). In the former case, the sides of the rectangles are not parallel to the axes of
the ellipse or to the sides of each other, while in the latter case the sides of the rectangle
are parallel to the axes of the ellipse and to each other.

(a) (b)

Figure 2: For N = 2, two possible configurations of rectangles that enclose the ellipse.

Trying to set up an optimization problem that can be solved on a computer in the
general case is not very easy. Several difficulties arose during this effort and as a result
the general case was abandoned. In all likelihood, it appears to be a non-trivial research
problem. However, it is also equally likely that my lack of knowledge of mathematics in
this particular field prevented me from being able to formulate the problem. Neverthe-
less, it is worth pointing out some of the key observations that were made during this
unsuccessful attempt:

1. Each rectangle has 5 degrees of freedom which means that we need 5 independent
variables to completely specify each rectangle. These are the X and Y coordinates
of the center of each rectangle, the length and breadth of each rectangle and the
angle by which one of the sides of each rectangle is rotated relative to the X axis.
This means that for N rectangles there are 5N independent variables.

2. The first difficulty that arose was in determining a way to calculate the objective
function for a given valid set of 5N independent variables. Valid set means that the
N rectangles corresponding to the 5N independent variables completely enclose
the ellipse. Assuming a valid set, one could calculate the area enclosed by all
the rectangles first and then subtract the area of the ellipse to get the objective

2

CME 304 Project, Winter 2016 Rahul Sarkar

function value. The calculation of the area enclosed by all the rectangles is non-
trivial but possible with a suitable algorithm. It involves computing a set of
disjoint(non-intersecting) polygons that represent the union of all the rectangles,
and then calculating the area of each disjoint polygon, followed by summing the
areas.

3. The next difficulty that was encountered was in computing the gradient of the ob-
jective function with respect to the 5N independent variables. The same difficulty
was encountered in the hessian computation. The lack of an analytical formula for
the objective function and consequently both the gradient and the hessian meant
that one had to rely entirely on finite difference schemes to evaluate these quanti-
ties of interest while solving the optimization problem. There is a possibility that
there may be risks associated with this idea as well, as there is a suspicion that the
objective function is non-differentiable, but this has not been properly investigated.

4. However, the most important difficulty was encountered in trying to come up with
a set of functional constraints that must be satisfied in order for the ellipse to be
completely enclosed by N rectangles, given by a set of 5N numbers. No way was
found to overcome this difficulty, but again it may be due to my ignorance in this
field.

Due to these observations, it was decided to restrict ourselves to a subset of possible
configurations for the rectangles, that makes the optimization problem particularly
amenable to an easy computer implementation. This is what we discuss next.

2.3 Imposing symmetry on the solution

Y

(a)

Y

(b)

Figure 3: For N = 2, two possible symmetric configurations of rectangles that enclose the ellipse.

Instead of trying to solve the optimization problem in the general case, we impose ex-
tra conditions on the possible configurations that the rectangles can achieve in terms of
their positions and orientations. These conditions are that the sides of each rectangle
must be parallel to the coordinate axes and the center of each rectangle must coincide
with the origin. Imposing these extra conditions leads to a symmetry requirement that
the rectangles must be invariant under inversion about the origin (x← −x, y ← −y),

3

CME 304 Project, Winter 2016 Rahul Sarkar

and reflection about the X axis (x← x, y ← −y) and Y axis (x← −x, y ← y). We
will call such configurations of rectangles that cover the ellipse as “symmetric covering
configurations (SCC).” Two such configurations are shown for N = 2 in Figure 3. It
turns out that although the configuration in Figure 3(b) is a SCC, it cannot be one
that minimizes the area outside the ellipse. For instance, the outermost rectangle can
always be shrunk so that its sides are tangential to the ellipse, thereby decreasing the
area outside the ellipse.

In general, it can be proved that a SCC that minimizes the area outside the ellipse must
be of the form shown in Figure 3(a). We skip the proof here, but present a geometrical
argument for why this must be true for N = 2. Let us start by noting that if there exists
a SCC where any one or both rectangles completely enclose the ellipse individually, then
each one of the rectangles can be shrunk so that they are tangential to the four apexes
of the ellipse, thereby decreasing the area outside the ellipse. The configuration thus
obtained has an area outside the ellipse that is larger than any configuration of the form
in Figure 3(a). Next note that it must also be true that for the minimum configuration,
atleast one rectangle must be tangential to the apexes joined by the minor axis of the
ellipse. But this rectangle cannot be tangential to the other two apexes as well, because
it will then fully enclose the ellipse and there exists configurations of the form in Figure
3(a) with a smaller area. This rectangle then must intersect the ellipse in the minimum
configuration at four other additional points. It then follows that the other rectangle
must be tangential to the remaining two apexes and in addition must intersect the
ellipse at the same four non-apex points, leading to the configuration of Figure 3(a).
This argument can be easily generalized to cases for N ≥ 2, but is more involved. In
Figure 4, we show possible SCC for N = 3 and 4.

Y

(a)

Y

(b)

Figure 4: (a) A SCC of rectangles for N = 3. (b) A SCC of rectangles for N = 4.

In what follows, we will be only concerned with finding solutions to the optimization
problem where the configuration of the rectangles is a SCC of the form descibed in
Figure 4. We will see that this leads to an enormous simplification of the optimization
problem as we will be able to write an analytical expression for the objective function.
This in turn will allow us to find easy analytical expressions for the gradient and hessian
of the objective function. But first, we reduce the problem to that on the first quadrant
by exploiting the symmetry of the solution.

4

CME 304 Project, Winter 2016 Rahul Sarkar

2.4 Reducing the problem to the first quadrant

We can exploit the symmetry of the solution to reduce the optimization problem to one
on only the first quadrant. To do that, let us note that both the SCC and the ellipse
itself are invariant under inversion about the origin and reflections about the X and Y
axes. Thus, the area outside the ellipse is also the same in each of the four quadrants.
We can then reduce the optimization problem to one of minimizing the area outside
the ellipse in only the first quadrant as shown in Figure 5(a). The rectangles in this
figure are the one-fourth part of the full rectangles over all the quadrants, and they
have the property that the lower left vertex coincides with the origin, and two sides of
each rectangle are coincident with the coordinate axes. The new problem then is to find
a configuration of rectangles of the form in Figure 5(a) such that the area outside the
ellipse in the first quadrant is minimized. It is easily seen that the problem is equivalent
to minimizing the area outside the ellipse for a simpler arrangement of rectangles as
shown in Figure 5(b). In Figure 5(b), two adjacent rectangles have coincident edges.
Solving this problem yields a solution to the problem on all the four quadrants through a
symmetric geometrical extension, through the crucial intermediate step of constructing
the form in Figure 5(a) from the one in Figure 5(b).

Y

(a)

Y

(b)

Figure 5: (a) This figure represents the picture in the first quadrant for a SCC of rectangles for N = 3.
Note that now all the rectangles have the lower left vertex coinciding with the origin. (b) This figure
represents the configuration of the rectangles leading to an equivalent optimization problem as in (a).

2.5 The objective function

We are finally in a position to write down the objective function corresponding to the
minimization problem of the area outside the ellipse in the first quadrant. Consider
again the ellipse given by equation (1) and let the number of rectangles be N . We will
look for a configuration of rectangles in the first quadrant of the form similar to Figure
5(b). Let the ith rectangle have width ahi. It follows then that the first rectangle has a
height b, the second rectangle has a height b(1− h21)1/2 and so on. The combined area
for all the N rectangles is then given by:

A = ab
N∑
i=1

hi

1−

(
i−1∑
j=1

hj

)2
1/2

(2)

5

CME 304 Project, Winter 2016 Rahul Sarkar

Now, the area of the ellipse in the first quadrant is πab
4

. The area outside the ellipse
is then the difference between the combined area of the rectangles and the area of the
ellipse, and hence the objective function is given by:

A = ab
N∑
i=1

hi

1−

(
i−1∑
j=1

hj

)2
1/2

− πab

4
(3)

Y

ah1 ah2 ah3 ah4

(a,0)(0,0)

(0,b)

Figure 6: This figure shows the configuration of
the rectangles for N = 4. Each adjacent pair of
rectangles have coincident edges and intersect the
ellipse at the same point.

We now have a minimization problem in
the N variables h1, h2, ..., hN . However,
we have certain constraints. First, since
the rectangles cover the ellipse it must be
true that

∑N
i=1 hi = 1. We would also

like to enforce that the solution always
involves positive hi, i.e hi > 0. This is es-
sential as otherwise the objective function
becomes unbounded below and complex
for hi → −∞. Also, the objective func-
tion defined in equation (3) is infinitely
differentiable in the domain specified by
these constraints. As an example, con-
sider Figure 6 which shows the arrange-
ment of the rectangles for N = 4. Each rectangle has an edge coincident with an edge
of the next rectangle, and each adjacent pair of rectangles also intersect the ellipse at
the same point. In fact, the top left vertex of each rectangle lies on the ellipse.

2.6 Reducing the problem to the unit circle

A really interesting consequence of the above formulation is that the optimization prob-
lem can simply be solved for the case a = b = 1. To see this, consider equation (3). The
important aspect in this equation is that the semi-major and semi-minor axes lengths
appear as a product in the objective function and can be factored out. Hence, mini-
mizing A is equivalent to minimizing A/(ab). But A/(ab) is nothing but the objective
function A for the case a = b = 1. With this insight, we can now define the objective
function to minimize as:

min F =
N∑
i=1

hi

1−

(
i−1∑
j=1

hj

)2
1/2

− π

4

s.t
N∑
i=1

hi = 1, hi > 0 ∀i = 1, . . . , N

(4)

If we can solve the above problem for the unit circle in (4), we can get a solution for the
problem for the ellipse in (3) for any arbitrary a and b by simply scaling the X and Y
axes appropriately (x← ax, y ← by). That in turn can be used to construct a solution
for the whole ellipse in all the four quadrants. This is great progress !

6

CME 304 Project, Winter 2016 Rahul Sarkar

2.7 The gradient of the objective function

To calculate the gradient of the objective function, we differentiate F with respect to
hk for k = 1, . . . , N . The result is given below:

∂F

∂h1
= 1−

N∑
i=2

hi

(
i−1∑
j=1

hj

)1−

(
i−1∑
j=1

hj

)2
−1/2

;

∂F

∂hk
=

1−

(
k−1∑
j=1

hj

)2
1/2

−
N∑

i=k+1

hi

(
i−1∑
j=1

hj

)1−

(
i−1∑
j=1

hj

)2
−1/2

; k = 2, . . . , N − 1

∂F

∂hN
=

1−

(
N−1∑
j=1

hj

)2
1/2

(5)

2.8 The hessian of the objective function

The hessian of the objective function can similarly be calculated, but the calculation is
tedious. The results are given below:

∂2F

∂hm∂hk
=


−
(∑k−1

j=1 hj

)[
1−

(∑k−1
j=1 hj

)2]−1/2

−
∑N

i=k+1 hi

[
1−

(∑i−1
j=1 hj

)2]−3/2

,

for k = 2, . . . , N − 1; m < k

−
(∑k−1

j=1 hj

)[
1−

(∑k−1
j=1 hj

)2]−1/2

, for k = N ; m < k

∂2F

∂h2k
=

−
∑N

i=k+1 hi

[
1−

(∑i−1
j=1 hj

)2]−3/2

, for k = 1, . . . , N − 1

0, for k = N

∂2F

∂hm∂hk
=


−
(∑m−1

j=1 hj

)[
1−

(∑m−1
j=1 hj

)2]−1/2

−
∑N

i=m+1 hi

[
1−

(∑i−1
j=1 hj

)2]−3/2

,

for k = 2, . . . , N − 1; m > k

−
∑N

i=m+1 hi

[
1−

(∑i−1
j=1 hj

)2]−3/2

, for k = 1; m > k

(6)

The hessian is symmetric and it can be directly verified that ∂2F
∂hm∂hk

= ∂2F
∂hk∂hm

from the

relationships in equation (6). Surprisingly, it turns out that the hessian calculation is
not very expensive for the objective function. One needs to calculate the diagonal entries
of the hessian and the first sub-diagonal only. All the other non-diagonal elements of
the hessian belonging to the same row are equal below the diagonal. This can again be
verified from equation (6). To get the entries of the hessian matrix above the diagonal,
one can just use symmetry of the hessian to get them from the computed entries below
the diagonal.

7

CME 304 Project, Winter 2016 Rahul Sarkar

3 Numerical Implementation

In this section, we present some of the key aspects of the numerical implementation for
solving the optimization problem in (4). We will briefly discuss the following aspects:

1. Efficient computation of the objective function, the gradient and the hessian.

2. Null space active set method to enforce the constraints.

3. Determining the direction of descent based on steepest descent or modified Newton.

4. The linesearch algorithm based on Goldstein or Strong-Wolfe criteria.

5. The complete high level algorithm to find the solution.

3.1 Efficient computation of the objective function

If we are given an input vector h :={h1, h2, . . . , hN} that satisfies the constraints in
(4), the algorithm to compute the objective function efficiently is given in Algorithm
1. The computational complexity of the algorithm is O(N), counting all the additions,
multiplications and exponentiation.

3.2 Efficient computation of the gradient

If we are given an input vector h :={h1, h2, . . . , hN} that satisfies the constraints in
(4), the algorithm to compute the gradient g :={g1, g2, . . . , gN} where gi = ∂F/∂hi, is
given in Algorithm 2. The computational complexity of the gradient computation is
also O(N), counting all the additions, multiplications and exponentiation. The space
complexity of the algorithm is O(N).

3.3 Efficient computation of the hessian

If we are given an input vector h :={h1, h2, . . . , hN} that satisfies the constraints in
(4), the algorithm to compute the hessian H :={Hij, ∀ i, j ∈ [1, . . . , N]} where Hij =
∂2F/∂hi∂hj, is given in Algorithm 2. The computational complexity of the hessian
computation is again O(N), counting all the additions, multiplications and exponenti-
ation. As mentioned previously, it is a nice surprise that the Hessian computation is
very cheap for the problem formulation in (4). In fact, it is no more expensive than the
gradient computation. However, the space complexity for the hessian is O(N2).

Algorithm 1 Computing The Objective Function

1: procedure Objective Function(h)
2: F = h1
3: s = 0
4: for i = 2, ..., N do
5: s = s+ hi−1

6: F = F + hi(1− s2)1/2

7: end for
8: F = F − π

4
9: end procedure

8

CME 304 Project, Winter 2016 Rahul Sarkar

Algorithm 2 Computing The Gradient

1: procedure Gradient(h)
2: s = 0
3: s1 = h1
4: for i = 2, ..., N do
5: si = si−1 + hi
6: end for
7: g = 0
8: for i = N, ..., 2 do
9: gi = (1− s2i−1)1/2

10: end for
11: g1 = 1
12: f = 0
13: for i = N − 1, ..., 1 do
14: f = f + hi+1si(1− s2i)−1/2

15: gi = gi − f
16: end for
17: end procedure

Algorithm 3 Computing The Hessian

1: procedure Hessian(h)
2: s = 0
3: s1 = h1
4: for i = 2, ..., N do
5: si = si−1 + hi
6: end for
7: H = 0
8: for i = N − 1, ..., 1 do
9: Hii = Hi+1 i+1 − hi+1(1− s2i)−3/2

10: end for
11: for i = 2, ..., N do
12: f = Hii − si−1(1− s2i−1)−1/2

13: for j = 1, ..., i− 1 do
14: Hij = f
15: Hji = f
16: end for
17: end for
18: end procedure

3.4 Strategy to enforce the constraints

We now briefly discuss how to enforce the constraints appearing in the optimization
problem in (4). Let us first note that there are two classes of constraints: equality
constraints and inequality constraints. They are stated again below.

N∑
i=1

hi = 1 (Equality Constraint)

hi > 0 ∀i ∈ {1, . . . , N} (Inequality Constraints)

(7)

9

CME 304 Project, Winter 2016 Rahul Sarkar

At any feasible point, the constraints in (7) must be true. The strategy that we adopt to
solve the problem is to always be feasible with respect to the strict equality constraint.
So initially, we will start from a point that is feasible with respect to all the constraints
and then search for the minimizer in the null space of only the equality constraint.

The strategy to maintain feasibility with respect to the inequality constraints is differ-
ent. The key observation that motivates this approach is that the solution to the opti-
mization problem in (4) cannot be such that any of the inequality constraints are satisfied
exactly. This can be proved easily with a geometric argument. Suppose for N rectangles
the solution to the optimization problem involves some hm = 0 for m ∈ {1, . . . , N}.
But this cannot be true because one can split any of the other rectangles with non-zero
width into two and decrease the area outside the ellipse, thereby leading to a contra-
diction. Hence, we cannot have hm = 0 at the minimizer. Applying this argument
recursively, one can prove that there can be no i such that hi = 0 at the minimizer.
Therefore, at the minimizer all the inequality constraints must be inactive. Also note
that the equality and inequality constraints in equation (7) together specify a bounded
convex domain.

These observations suggest that as long as we stay feasible with respect to the hy-
perplane

∑N
i=1 hi = 1, and in addition remain inactive with respect to the inequality

constraints we should be able to converge to a minimizer inside the bounded convex
domain. This motivates the following strategy to remain feasible with respect to the
inequality constraints: starting from a feasible point at the current iterate we will de-
termine a search direction, and then inside the linesearch routine we will choose the
maximum step length so that none of the inequality constraints are hit. This will lead
to a feasible point inactive with respect to the inequality constraints, to repeat the same
process for the next iteration.

With this strategy our working set will always consist of only the row vector [1 1 . . . 1 1].
Therefore, using the notation in Walter’s notes, we have:

A1×N =
[
1 1 . . . 1 1

]
(8)

For such an A, the orthogonal matrix Z that spans the null space of A is obtained by
performing a QR decomposition of the matrix M in equation (9).

MN×(N−1) =



1
−1 1
. −1 1
. . −1 . 1 . .
. . . . −1 1 .
. −1 1
. −1


(9)

It is easy to check that M spans the null space of A, i.e AM = 0, and is full column
rank. The matrix Z is then given by ZR = M , where R is a non-singular upper-
triangular matrix. We then have AZ = 0 and ZTZ = I. This QR factorization

10

CME 304 Project, Winter 2016 Rahul Sarkar

only needs to be performed once and does not need to be changed from one iteration
to the next for a fixed number of rectangles N . The initial feasible point with re-
spect to both the equality and inequality constraints can be taken for example to be
h(0) = [1/N 1/N . . . 1/N 1/N]T . Once Z is calculated, one can see that any search
direction of the form p = Zpz will ensure that the successive iterates satisfy the equality
constraint exactly. Finally, the reduced gradient and the reduced hessian can be calcu-
lated as in equation (10). Calculating these quantities are O(N2) and O(N3) operations
respectively, in terms of computational complexity.

Reduced Gradient = ĝ = ZTg

Reduced Hessian = Ĥ = ZTHZ
(10)

3.5 Determining the direction of descent

We will compare the performance of the optimization program for two different cases of
descent directions based on 1) steepest descent and 2) modified Newton. The numerical
details of their implementations are briefly discussed next.

1. Steepest descent: The direction of steepest descent is computed using the relation
p = −Zĝ = −Z(ZTg). Given ĝ and Z, this is an O(N2) operation. This needs to
be done once per iteration in the optimization program.

2. Modified Newton: The modified Newton approach is just an improved version of the
Newton method for determining the search direction that safeguards against the
indefiniteness of the Hessian. In our implementation, once the reduced hessian Ĥ
has been calculated, to get the modified newton update we first perform a modified
cholesky decomposition of Ĥ. Following the notation in Walter’s notes, we choose
the parameter ε = 10−6, and the parameter β = max

i
(|Ĥii|1/2) for i = 1, . . . , N .

The modified cholesky decomposition computes a non-singular upper-triangular
matrix R̂ that satisfies equation (11). The algorithm used for the decomposition
is the same as in Walter’s notes, and so we do not repeat it here.

Ĥ + E = R̂T R̂ (11)

Once we have R̂, we can compute the search direction p as follows in equation (12).
The process involves solving two triangular systems of linear equations where the
first one is solved using forward substitution and the second one is solved using
backward substitution.

Forward solve : R̂Tu = −ĝ = −ZTg

Backward solve : R̂v = u

Compute descent direction : p = Zv

(12)

Given ĝ, Ĥ and Z, the modified cholesky algorithm can be used to compute the
descent direction in O(N3) computational complexity. Even though this is costlier
as compared to steepest descent, it will be seen that it more than justifies itself
due to the property of quadratic convergence of the Newton method, close to the
true solution.

11

CME 304 Project, Winter 2016 Rahul Sarkar

3.6 The linesearch algorithm

We implemented and tested the linesearch algorithm using both the Goldstein and
Strong-Wolfe conditions. The most critical aspect in implementing them is to determine
a maximum step length parameter αmax that prevents too large of an update. This is
important in the context of this particular problem as choosing αmax too large can
make our solution become violated with respect to the inequality constraints, as has
been mentioned previously. The strategy that we adopt here is to first calculate the
parameter αmax and then pass it as a parameter to either of the linesearch routines.
We present how to determine αmax in Algorithm 4, given an initial feasible point h and
a search direction p. In the last step of Algorithm 4, we set αmax = 0.99αmax. This
sets the maximum step length to be slightly smaller than what would cause one to hit
the nearest inequality constraint if one moved along the direction p starting from h.
Algorithm 4 determines αmax in O(N) computational complexity, which needs to be
performed once every iteration.

Algorithm 4 Computing αmax
1: procedure Determine Alpha Max(h,p)
2: αmax =∞
3: for i = 1, . . . , N do
4: if pi < 0 then
5: α = −hi/pi
6: if α < αmax then
7: αmax = α
8: end if
9: end if

10: end for
11: αmax = 0.99αmax
12: end procedure

Let us next briefly discuss the choice of parameters for the linesearch algorithms and
some of the main implementation details.

1. Goldstein linesearch: For a search direction p, the current iterate h and a gradient
g at the current iterate, the Goldstein linesearch algorithm proceeds by finding an
initial interval D = [α1 α2] ⊂ [0 αmax] such that equation (13) is true, for some
choice of µ1 and µ2 such that 0 < µ1 ≤ µ2 < 1.

F (h + α1p) < F (h) + µ2α1g
Tp , F (h + α2p) > F (h) + µ1α2g

Tp (13)

Once such an interval is determined, we use bisection to reduce the interval iter-
atively till we find a point satisfying the Goldstein conditions in the interval D.
The Goldstein condition is satisfied when equation (14) holds. Also note that it
may be the case that while searching for an interval satisfying equation (13), we
might find a point that satisfies equation (14) before an interval is found. In that
case we have already found a valid α satisfying Goldstein conditions and nothing
further has to be done.

F (h) + µ2αgTp ≤ F (h + αp) ≤ F (h) + µ1αgTp (14)

12

CME 304 Project, Winter 2016 Rahul Sarkar

In our implementation, we choose µ1 = 0.4, µ2 = 0.6 and α1 = 0. Also there is
a special case that needs to be handled separately which occurs when no initial
interval satisfying equation (13) can be found. This may happen because depend-
ing on the value of αmax, it might be the case that there exists no α, α2 ∈ [0 αmax]
such that equation (13) or (14) holds. It may also be due to the fact that such a
point exists, but we have not checked all possible points α2 in the interval [0 αmax]
that satisfies equation (13). The later possibility arises because we do not want
to spend too much computational effort in doing the linesearch at every iteration,
and in any case there are infinite such points to check - so we will never be able to
check all of them. The solution that we chose is to uniformly check 26 = 64 points
in the interval [0 αmax] till either equation (13) or (14) is satisfied. However, if no
such points are found, then we choose the value of α to be the one that achieves
the minimum value of the objective function among all the points checked.

2. Strong-Wolfe linesearch: The Strong-Wolfe linesearch proceeds in a manner similar
to Goldstein linesearch. For a search direction p, the current iterate h and a
gradient g at the current iterate, the Strong-Wolfe linesearch algorithm proceeds by
finding an initial interval D = [0 α2] ⊂ [0 αmax] such that either of the conditions
in equation (15) is true, for some choice of µ and η such that 0 < µ ≤ η < 1, and
0 < µ < 1/2.

F (h + α2p) > F (h) + µα2g
Tp or ∇F (h + α2p)Tp > −ηα2g

Tp (15)

Once such an interval is found, we use bisection to reduce the interval iteratively
till a point α in D is found that satisfies the Strong-Wolfe conditions given in
equation (16). Also note that as in the case of Goldstein linesearch, it may happen
that a point α satisfying equation (16) may be found before an interval satisfying
equation (15) is found. In that case, we have found a point satisfying the Strong-
Wolfe conditions.

F (h + αp) ≤ F (h) + µαgTp

ηαgTp ≤ ∇F (h + αp)Tp ≤ −ηαgTp
(16)

For Strong-Wolfe linesearch, we choose µ = 0.3 and η = 0.5. We check a maximum
of 26 = 64 points in the interval [0 αmax] in the step to find an interval satisfying
equation (15), and in exact analogy to Goldstein linesearch if no such interval is
found, we set α to be the value that achieves the minimum of the objective function
among all the points checked.

3.7 The complete algorithm (high level pseudocode)

We can finally present the high-level algorithm to solve the optimization problem. We
have developed the relevant components over the previous sections and refer to them
again in the full algorithm presented next, without elaborating each component. It
should be noted that although the algorithm structure presented in Algorithm 5 remains
the same, the execution of each component may be different. For example, we have
linesearch based on Goldstein or Strong-Wolfe conditions, determination of descent
direction based on steepest descent or modified-Newton etc.

13

CME 304 Project, Winter 2016 Rahul Sarkar

Algorithm 5 The Full Optimization Algorithm

1: procedure Optimize(N)
2: Determine initial feasible point h(0)

3: Construct M
4: Perform QR factorization: ZR = M
5: Calculate initial reduced gradient and reduced hessian: ĝ(0), Ĥ(0)

6: i = 0
7: while ||ĝ(i)||2/N > 10−10 or smallest pivot in modified cholesky of Ĥ(i) < 0 do
8: Determine direction of descent p(i) (Steepest Descent/Modified Newton)

9: Calculate α
(i)
max

10: Perform linesearch to get α(i) (Goldstein/Strong-Wolfe)
11: h(i+1) = h(i) + α(i)p(i)

12: i = i+ 1
13: Calculate ĝ(i), Ĥ(i)

14: Perform modified Cholesky of Ĥ(i) (if not calculated before, i.e if using steepest descent)
15: end while
16: end procedure

Algorithm 5 takes as input the number of rectangles N . The program terminates
upon satisfaction of the first and second order optimality conditions. To account for
finite numerical accuracy achievable with a computer, we put a small tolerance (10−10)
on the value of the reduced gradient scaled by N at the optimal point. Similarly, the
positive definiteness of the reduced Hessian is checked by performing a modified cholesky
decomposition on it, and checking if the smallest pivot is negative. At the termination
of the program, we get the vector h which is our solution to the optimization problem.
F (h) gives us the value of the objective function, i.e the minimum area outside the unit
circle for N rectangles.

4 Results

In this section, we present the results obtained by the optimization program. All results
will be presented on the unit circle, although at the end we will show an example of how
the result looks for the case of an ellipse. As we shall see from the results, solving the
problem on the unit circle reveals some very interesting properties of the solution. We
begin by studying some of these properties generated using the optimization program
outlined in Algorithm 5. The Strong-Wolfe linesearch and modified Newton search
direction were used inside the algorithm for all the results discussed in the sections 4.1
- 4.2, while the initial feasible point was taken as h(0) = [1/N 1/N . . . 1/N 1/N]T for
solving each problem for different values of N .

4.1 Properties of the solution for different N

We plot how the solutions look for different values of N in Figure 7. As can be seen,
the solution behaves as expected. Every time we add a new rectangle, it is intuitively
clear that it is possible to decrease the area outside the circle. This can be easily seen
through a geometrical argument. Suppose we have found the optimal solution F ∗

N for

14

CME 304 Project, Winter 2016 Rahul Sarkar

N rectangles, and we want to find the solution for N + 1 rectangles. One can start
by dividing any rectangle at the optimal solution for N into two rectangles to yield a
feasible point for the case N + 1 (as an example, consider the diagrams in Figure 7 for
N = 1 and N = 2 to see how such a division could be done). Let the objective function
value in this configuration be F

′
N+1. If at the optimal solution for N + 1 rectangles, the

value of the objective function is F ∗
N+1, then it must be true that F ∗

N+1 ≤ F
′
N+1 < F ∗

N .
Therefore as N increases, the area outside the unit circle decreases monotonically. In
the limit as N →∞, this area converges to 0.

N = 1 N = 2 N = 4

N = 8 N = 16 N = 32

N = 64 N = 128 N = 256

Figure 7: The configuration of the rectangles at the optimal solution point for different values of N .

15

CME 304 Project, Winter 2016 Rahul Sarkar

The minimum area outside the unit circle (F ∗
N) determined by solving the optimization

problem numerically, as a function of the number of rectangles N is plotted in Figure 8.
To be precise, we have plotted F ∗

N on a logarithmic axis versus log2N . The interesting
result here is that the plot seems to be linear for large N .

0 1 2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

10
0

Log
2
(N), N = number of rectangles

A
re

a
ou

ts
id

e
un

it
ci

rc
le

 a
t t

he
 o

pt
im

al
 s

ol
ut

io
n

Minimum area outside unit circle vs log
2
(N)

Figure 8: This figure plots F ∗
N on a logarithmic axis as a function of log2N .

Another interesting quantity of interest is the area outside the unit circle for each
rectangle corresponding to the solution for a total of N rectangles. We plot this quantity
for N = 32, 64 and 128 in Figure 9. The easy observation from these figures is that the
area outside each rectangle decreases as the number of rectangles N increases. This
is completely expected. However, there is another more interesting fact about these
rectangles that is a little harder to see. This is an important result and we state it
below:

For a fixed value of N , the area outside the unit circle at the optimal solution for each
of the N rectangles is a symmetrical function about N/2.

To see this, look at Figure 10 which plots the same figures as in Figure 9 for N =
32 and 128 over a smaller dynamic range suitable for each figure. The symmetry is

16

CME 304 Project, Winter 2016 Rahul Sarkar

easily seen. However, this is predictable from a geometrical argument on the circle.
Imagine how the figures shown previously in 5 (a) and (b) would look like for the unit
circle, the latter case being the optimization problem we are solving. The equivalence
of the problems characterized by Figures 5 (a) and (b) (as explained in section 2.4)
leads to an important conclusion, which is that Figure 5 (a) at the optimal point for the
unit circle must be invariant under a permutation of the coordinate axes y ← x, x← y,
due to symmetry for any N . Note that the symmetry argument only holds for the
configuration of the rectangles at the optimal solution with the circle playing a key
role in the argument. What this implies is that if one swapped the X and Y axes, the
entire image (all the rectangles and circle combined) would resemble the image before
the swapping took place.

5 10 15 20 25 30

10
−4

10
−3

Rectangle Number

A
re

a
ou

ts
id

e
un

it
ci

rc
le

 fo
r

ea
ch

 r
ec

ta
ng

le

N = 32

10 20 30 40 50 60

10
−4

10
−3

Rectangle Number

A
re

a
ou

ts
id

e
un

it
ci

rc
le

 fo
r

ea
ch

 r
ec

ta
ng

le

N = 64

20 40 60 80 100 120

10
−4

10
−3

Rectangle Number
A

re
a

ou
ts

id
e

un
it

ci
rc

le
 fo

r
ea

ch
 r

ec
ta

ng
le

N = 128

Figure 9: This figure plots the area outside each rectangle at the optimal solution determined by the
optimization program for N = 32, 64 and 128. The vertical axis here is plotted in a logarithmic scale,
and the range of the vertical axis is kept the same.

5 10 15 20 25 30

10
−3.48

10
−3.47

10
−3.46

10
−3.45

10
−3.44

10
−3.43

10
−3.42

10
−3.41

Rectangle Number

A
re

a
ou

ts
id

e
un

it
ci

rc
le

 fo
r

ea
ch

 r
ec

ta
ng

le

N = 32

20 40 60 80 100 120

10
−4.66

10
−4.65

10
−4.64

10
−4.63

10
−4.62

10
−4.61

10
−4.6

10
−4.59

Rectangle Number

A
re

a
ou

ts
id

e
un

it
ci

rc
le

 fo
r

ea
ch

 r
ec

ta
ng

le

N = 128

Figure 10: Same plot as in Figure 9 for N = 32 and 128 with reduced range on the vertical axis.

17

CME 304 Project, Winter 2016 Rahul Sarkar

An exactly similar symmetry argument also suggests the following result. We state this
below:

The angles subtended by the circumference of the circle contained inside each of the N
rectangles at the optimal solution is also a symmetrical function about N/2.

This result is shown in Figure 11 for the cases N = 32 and 64. The angle being plotted
here is the angle subtended by the arc at the center of the circle, where the end points
of the arc for each rectangle are the two points where each rectangle intersects the
circumference of the circle.

5 10 15 20 25 30
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Rectangle Number

A
ng

le
 in

 r
ad

ia
n

N = 32

10 20 30 40 50 60
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Rectangle Number

A
ng

le
 in

 r
ad

ia
n

N = 64

Figure 11: Plot of the angle subtended by the part of the circumference contained inside each rectangle
at the center of the circle, for the cases N = 32 and 64.

Both the symmetry results stated above follow because of symmetries of the circle.
This is an important point because we would have missed these nice properties of the
solution if we had solved our optimization problem on the ellipse directly, as then the
same quantities would have no longer been symmetrical.

In the next section, we study how the performance of the algorithm such as run time,
number of iterations and other key performance indicators vary as a function of the the
number of rectangles N .

4.2 Performance analysis versus the number of rectangles N

1. Number of function and gradient evaluations: In Figure 12, we plot the total
number of function and gradient evaluations for the entire run of the optimization
program for different values of N . The vertical axis is plotted in a logarithmic
scale, while along the horizontal axis we plot the value of log2N . As we can
see, the number of function and gradient evaluations decrease as the value of N
increases (except near N = 26 = 64, I’m not sure what is causing this...needs more

18

CME 304 Project, Winter 2016 Rahul Sarkar

investigation). There are several desirable aspects about these figures that deserve
some discussion.

(a) The figures illustrate that increasing the dimension of the problem does not
lead to an ever increasing amount of work in terms of function and gradient
evaluations. In fact, it should be pointed out that this is a consequence of using
modified Newton to find the search direction at every iteration, which is not
the case if the search directions were determined using steepest descent!!.

(b) Numerical tests done with steepest descent did not even converge in a rea-
sonable amount of time for N = 210 rectangles on a windows PC on which
all computing was done for this project. In fact, the number of function and
gradient evaluations increase with N .

(c) Another aspect that could be behind these figures is how we choose the initial
feasible point. Everything we discussed so far is based on choosing the initial
point as h(0) = [1/N 1/N . . . 1/N 1/N]T . It may be that this is a very
good starting solution and changing the initial feasible point to something
else might lead to a degraded performance.

0 1 2 3 4 5 6 7 8 9 10
10

1

10
2

10
3

Log
2
(N), N = number of rectangles

T
ot

al
 n

um
be

r
of

 fu
nc

tio
n

ev
al

ua
tio

ns

Number of function evaluations vs log
2
(N)

(a)

0 1 2 3 4 5 6 7 8 9 10
10

1

10
2

10
3

Log
2
(N), N = number of rectangles

T
ot

al
 n

um
be

r
of

 g
ra

di
en

t e
va

lu
at

io
ns

Number of gradient evaluations vs log
2
(N)

(b)

Figure 12: (a) Plot of the total number of function evaluations vs log2N . (b) Plot of the total number
of gradient evaluations vs log2N . The vertical axis is plotted on a logarithmic scale.

2. Number of iterations and total run time: We next study the total number of
iterations needed to converge to the true solution as a function of N and also how
the run time varies with N . These results are plotted in Figure 13 (a) and (b)
respectively. We make the following comments about these plots below:

(a) The optimization algorithm with modified Newton search direction is ex-
tremely robust in terms of generating search directions that quickly converge
to the optimal solution. The number of iterations appear to be approximately
10 across the entire range of N tried in this project 20 − 210. However, this

19

CME 304 Project, Winter 2016 Rahul Sarkar

again might be influenced by the fact that the initial feasible solution is a
good starting point. An important comment regarding this is that the conclu-
sions would be completely different had one used steepest descent to generate
the search directions. With steepest descent the number of iterations needed to
converge goes up drastically.

(b) Figure 13 (b) is the more practical plot of interest that shows that the actual
run time does increase with increasing the value of N . Neglecting the initial
part of the curve for small values of N where overhead effects are probably
influencing the behavior of the curve, we see that for large N the run time
increases exponentially (since the horizontal axis plots log2N).

(c) A big reason for the increase in run time involves forming the hessian ma-
trix, accessing its elements, performing the modified cholesky factorization
and associated increases in computational complexity for matrix vector mul-
tiplications with increasing N . So this dependence of the total run time on N
is expected.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

Log
2
(N), N = number of rectangles

N
um

be
r

of
 it

er
at

io
ns

 ti
ll

co
nv

er
ge

nc
e

Number of iterations vs log
2
(N)

0 1 2 3 4 5 6 7 8 9 10
10

−2

10
−1

10
0

10
1

10
2

Log
2
(N), N = number of rectangles

T
ot

al
 r

un
tim

e
(in

 s
ec

on
ds

)

Total runtime vs log
2
(N)

Figure 13: (a) This figure is a plot of the total number of iterations taken to converge to the solution
vs log2N . (b) This figure is a plot of the total run time of the optimization program vs log2N . The
vertical axis in (b) is plotted in a logarithmic scale.

4.3 Performance analysis of the algorithm for different line search strate-
gies and for different descent directions for a fixed value of N

So far we have looked at different results by using descent directions generated using
the modified Newton algorithm and the Strong-Wolfe line search criteria inside the
optimization program. In this section, we will study how the performance of the opti-
mization program depends on the choice of the line search algorithm and the choice of
using different descent directions. We choose N = 100 for this study and do not vary
it.

20

CME 304 Project, Winter 2016 Rahul Sarkar

Comparison of Goldstein and Strong-Wolfe line search implementations

In the first test, we use steepest descent to generate our descent directions and then com-
pare some key performance parameters using these directions for different line search
methods - Goldstein and Strong-Wolfe, as a function of the iteration number. For the
purpose of this study, we fix the total number of iterations at 100. In fact, the solu-
tion does not converge in 100 iterations (because we are using steepest descent), but is
enough to illustrate the main differences. The following quantities are of interest as a
function of the iteration number:

• Norm of reduced gradient ||ĝ||

• Norm of search direction ||p||

• Objective function F

• The step length α

• Number of function and gradient evaluations at every iteration

• Number of cumulative function and gradient evaluations

0 20 40 60 80 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration number

N
or

m
 o

f s
ea

rc
h

di
re

ct
io

n
: p

Goldstein Linesearch
Strong−Wolfe Linesearch

(a) ||p||2

0 20 40 60 80 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration number

N
or

m
 o

f r
ed

uc
ed

 g
ra

di
en

t :
 Z

T
g

Goldstein Linesearch
Strong−Wolfe Linesearch

(b) ||ĝ||2

Figure 14: In this figure we plot the norm of the search direction vector ||p||2 and the norm of the
reduced gradient ||ĝ||2 as a function of the iteration number, in (a) and (b) respectively. The vertical
axis is plotted in a logarithmic scale.

In Figures 14 (a) and (b), we plot the norm of the search direction vector ||p||2 and
the norm of the reduced gradient ||ĝ||2 as a function of the iteration number. As
we can see, we are very far from achieving convergence as ||ĝ||2 ∼ 10−4 after 100
iterations. However, the plots suggest that Strong-Wolfe line search is achieving an
order of magnitude better convergence compared to Goldstein line search.

21

CME 304 Project, Winter 2016 Rahul Sarkar

In Figure 15 (a), we plot the function value F versus the iteration number. The plot
suggests that in terms of achieving the optimal value of the objective function, both the
line search algorithms are good overall. The main differences are in how many digits
after the decimal point do the answers match the true solution. However, as we can
see, after 40 iterations the algorithms with either line search match the true solution
with less than 1% error. In Figure 15 (b), we plot the step length α as a function of the
iteration number. It appears that α for either line search spans 3 orders of magnitude
(10−1 − 101), but there is no pattern in this figure of relevance.

0 20 40 60 80 100
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

−3

Iteration number

F
un

ct
io

n
va

lu
e

: F

Goldstein Linesearch
Strong−Wolfe Linesearch

(a) F

0 20 40 60 80 100
10

−2

10
−1

10
0

10
1

10
2

Iteration number

S
te

p
le

ng
th

 :
α

Goldstein Linesearch
Strong−Wolfe Linesearch

(b) α

Figure 15: In this figure we plot the function value F and the step length α as a function of the
iteration number, in (a) and (b) respectively. The vertical axis in (b) is plotted in a logarithmic scale.

Next, in Figure 16 we plot some useful statistics of the number of function and gradient
evaluations as a function of iteration number for the Goldstein and Strong-Wolfe line
search algorithms. Figures 16 (a) and (b) show the exact number of function and
gradient evaluations respectively, taking place per iteration. As one can see, the number
of gradient evaluations in the optimization algorithm with Goldstein line search is just
one per iteration. This is because as one can see from equations (13) and (14), the
conditions check for only the function values F (h+αp) at the new points. The quantity
gTp appearing in the conditions only need to be computed for the first point being
checked and for any new point being checked it does not change. However, for Strong-
Wolfe line search, we need to compute the gradient of the function at each point we check
which explains Figure 16 (b). Finally for Figures 16 (a) and (b), one needs to note that
for the Strong-Wolfe line search both the number of function and gradient evaluations
are showing an overall increasing tendency with increasing iteration number. (This
is worrying because we expect the amount of computation involved in the line search
to decrease as we converge closer and closer to the solution. This probably points to
inefficiencies in the line search code that we have currently !)

22

CME 304 Project, Winter 2016 Rahul Sarkar

0 20 40 60 80 100
0

5

10

15

Iteration number

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

 p
er

 it
er

at
io

n

Goldstein Linesearch
Strong−Wolfe Linesearch

(a)

0 20 40 60 80 100
0

5

10

15

Iteration number

N
um

be
r

of
 g

ra
di

en
t e

va
lu

at
io

ns
 p

er
 it

er
at

io
n

Goldstein Linesearch
Strong−Wolfe Linesearch

(b)

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

1000

Iteration number

C
um

ul
at

iv
e

nu
m

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

Goldstein Linesearch
Strong−Wolfe Linesearch

(c)

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

1000

Iteration number

C
um

ul
at

iv
e

nu
m

be
r

of
 g

ra
di

en
t e

va
lu

at
io

ns

Goldstein Linesearch
Strong−Wolfe Linesearch

(d)

Figure 16: In this figure we plot : (a) Number of function evaluations per iteration, (b) Number of
gradient evaluations per iteration, (c) Cumulative number of function evaluations, (d) Cumulative
number of gradient evaluations, versus the iteration number.

In Figures 16 (c) and (d), we plot the cumulative number of function and gradient
evaluations as a function of the iteration number. There is no more information in
them than in Figures 16 (a) and (b). However, it is still nice to visualize these results.
In particular it reveals that the number of function evaluations tend to be the same for
both Goldstein and Strong-Wolfe line search algorithms, while the number of gradient
evaluations is clearly much greater for Strong-Wolfe line search than for Goldstein line
search.

Comparison of steepest descent and modified Newton search directions

In this section we study the superiority of the modified Newton algorithm as compared
to the steepest descent algorithm when it comes to generating good search directions.
We know of the theoretical result that close to the true solution, Newton iterates exhibit

23

CME 304 Project, Winter 2016 Rahul Sarkar

quadratic convergence. This is really what is behind some of the spectacular results
that follow. The number of rectangles in this study is again fixed at N = 100, while the
optimization program is run for 100 iterations, without an explicit convergence criteria
enforced to stop execution. We have already demonstrated that with steepest descent,
we do not achieve convergence in 100 iterations, but we will be pleasantly surprised to
see that modified Newton converges in ∼ 50 iterations. For this study, we will use the
Strong-Wolfe conditions in the line search. We plot the same quantities plotted in the
Figures 14, 15 and 16, but this time we compare the results obtained using modified
Newton versus steepest descent algorithms.

We begin by plotting the norm of the search direction vector ||p||2 and the norm of
the reduced gradient ||ĝ||2 in Figures 17 (a) and (b) respectively, as a function of
the iteration number using modified Newton and steepest descent directions. The
results show that both these quantities ||p||2 and ||ĝ||2 reach machine precision ∼ 10−15

by iteration 50 for modified Newton. Contrast this with the dismal performance of
steepest descent which only manages to reduce these quantities to about ∼ 10−5 after
100 iterations. This clearly is a consequence of the quadratic convergence properties
of the Newton iterates close to the optimal point, something that the steepest descent
iterates lack completely.

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

Iteration number

N
or

m
 o

f s
ea

rc
h

di
re

ct
io

n
: p

Steepest Descent
Modified Newton

(a) ||p||2

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

Iteration number

N
or

m
 o

f r
ed

uc
ed

 g
ra

di
en

t :
 Z

T
g

Steepest Descent
Modified Newton

(b) ||ĝ||2

Figure 17: In this figure we plot the norm of the search direction vector ||p||2 and the norm of the
reduced gradient ||ĝ||2 as a function of the iteration number, in (a) and (b) respectively. The vertical
axis is plotted in a logarithmic scale.

In Figure 18 (a), we plot the objective function F versus the number of iterations for the
optimization program run using modified Newton and steepest descent directions. The
rate at which the modified Newton iterates converge to the true solution is spectacular
- in fact we reach the true solution within an error tolerance of 1% of the objective
function value at the optimal solution, in just 5 iterations. Comparatively, the steepest

24

CME 304 Project, Winter 2016 Rahul Sarkar

descent iterates take about 40 iterations to reach the same tolerance in terms of the
objective function value. The amazing convergence of the modified Newton iterates
is a consequence of quadratic convergence of the Newton iterates near the optimal
solution. In Figure 18 (b), we plot the value of the step length α as a function of the
iteration number. The general observation is that for steepest descent, α is in the range
∼ 10−1 − 101. For modified Newton iterates, the value of α seems to have a bigger
dynamic range ∼ 10−6 − 100, but there is also an undesirable feature for N ∼ 65 or
larger. It seems that the value of alpha becomes equal to 10−3 in this range. This
shouldn’t be, as from theory we know that α should be close to 1 near the optimal
solution, for search directions generated using the Newton method. This probably is due
to inefficiencies in the line search routine and needs more investigation ! However, it
is equally likely that this effect is a manifestation of the fact that we cannot compute
very small numbers (∼ 10−15) on the computer with high accuracy, and the lack of
precision in being able to compute the function value and the gradient interferes with
the quadratic convergence of the Newton iterates.

0 20 40 60 80 100
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

−3

Iteration number

F
un

ct
io

n
va

lu
e

: F

Steepest Descent
Modified Newton

(a) F

0 20 40 60 80 100
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Iteration number

S
te

p
le

ng
th

 :
α

Steepest Descent
Modified Newton

(b) α

Figure 18: In this figure we plot the function value F and the step length α as a function of the
iteration number, in (a) and (b) respectively. The vertical axis in (b) is plotted in a logarithmic scale.

Finally, we plot the number of function and gradient evaluations per iteration, for
steepest descent and modified Newton iterates in Figures 19 (a) and (b) respectively.
We see that for modified Newton search directions, the Strong-Wolfe line search needs
to perform many more function and gradient evaluations compared to the steepest
descent search directions. The unpleasant aspect about these plots is that for modified
Newton search directions, the line search routine does too many computations even after
convergence is reached. This can either be due to the inability to compute and compare
very small numbers (∼ 10−15) accurately on a computer, and due to inefficiencies in
the line search implementation.

25

CME 304 Project, Winter 2016 Rahul Sarkar

Figures 19 (c) and (d) plot the cumulative number of function and gradient evalua-
tions respectively for the optimization program with descent directions generated using
modified Newton or steepest descent algorithm, versus the iteration number. Although
we expect the plots to be increasing with the number of iterations (which is the case
for both algorithms), it is clear that the total number of function and gradient com-
putations become very large for the modified Newton search direction implementation.
This may be also true for the steepest descent directions once the solution gets “close
enough” to the true solution, which the steepest descent algorithm fails to do in 100
iterations and so we don’t see the effect in these plots.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Iteration number

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

 p
er

 it
er

at
io

n

Steepest Descent
Modified Newton

(a)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Iteration number

N
um

be
r

of
 g

ra
di

en
t e

va
lu

at
io

ns
 p

er
 it

er
at

io
n

Steepest Descent
Modified Newton

(b)

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

Iteration number

C
um

ul
at

iv
e

nu
m

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

Steepest Descent
Modified Newton

(c)

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

Iteration number

C
um

ul
at

iv
e

nu
m

be
r

of
 g

ra
di

en
t e

va
lu

at
io

ns

Steepest Descent
Modified Newton

(d)

Figure 19: In this figure we plot : (a) Number of function evaluations per iteration, (b) Number of
gradient evaluations per iteration, (c) Cumulative number of function evaluations, (d) Cumulative
number of gradient evaluations, versus the iteration number.

Finally, we should note that even though we plotted 100 iterations with the modified
Newton algorithm being used to generate the search directions inside the optimization
program, Figure 12 says that convergence is reached in only about 10-15 iterations.

26

CME 304 Project, Winter 2016 Rahul Sarkar

So all the issues pointed out about the line search routine, are never really
encountered in practice as the program stops much before due to conver-
gence being achieved. Nevertheless, the plots in Figures 18 and 19 are important to
consider in order to be able to find computer bugs.

4.4 Impact of choosing different starting solutions on performance

In this section we study how choosing different starting solutions impact the perfor-
mance of the optimization program for a fixed value of N = 100.

0 20 40 60 80 100
3.5

4

4.5

5

5.5

6
x 10

−3

Iteration number

F
un

ct
io

n
va

lu
e

: F

(a)

0 20 40 60 80 100
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration number

N
or

m
 o

f r
ed

uc
ed

 g
ra

di
en

t :
 Z

T
g

(b)

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

Iteration number

C
um

ul
at

iv
e

nu
m

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

(c)

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

Iteration number

C
um

ul
at

iv
e

nu
m

be
r

of
 g

ra
di

en
t e

va
lu

at
io

ns

(d)

Figure 20: In this figure we plot for different randomly generated starting feasible solutions : (a) func-
tion value F , (b) norm of the reduced gradient ||ĝ||2, (c) Cumulative number of function evaluations,
(d) Cumulative number of gradient evaluations, versus the iteration number. The vertical axis is (a)
and (b) are plotted in a logarithmic scale. Each color represents a different starting solution and the
colors across all the four figures are consistent.

Again, we have plotted some key performance indicators for 100 iterations, like function
value F , the norm of the reduced gradient ||ĝ||2, cumulative number of function and

27

CME 304 Project, Winter 2016 Rahul Sarkar

gradient evaluations as a function of the iteration number. We use the modified Newton
algorithm to generate search directions and Strong-Wolfe line search for this study. The
results are plotted in Figure 20. Each of the colors represent the results for a randomly
generated initial feasible point. As one can see, there is not much difference in the
performance of the algorithm when we use different starting feasible points, and all of
them exhibit similar convergence characteristics and computational effort in terms of
function and gradient evaluations.

4.5 Extending the solution to the full ellipse

(a) (b)

(c)

Figure 21: This figure illustrates how the solution obtained can be extended to obtain the configuration
of the rectangles for the unit circle on all the four quadrants. (a) This is the solution of the optimization
problem that we solve for the unit circle on the first quadrant. (b) Next, note how the solution in (a)
remains unchanged for this new configuration of the rectangles. (c) Finally, the configuration in (b)
can be extended to all the four quadrants to give the solution of the ellipse covering problem in all
four quadrants. Here we have plotted the results for N = 8 rectangles.

We finish the analysis by showing how the problem solved on only the first quadrant
for a unit circle directly yields a SCC solution for the whole ellipse in all the four

28

CME 304 Project, Winter 2016 Rahul Sarkar

quadrants. The result is through a simple geometrical extension. We first consider
Figures 21 (a), (b) and (c). Here we look at results using N = 8 rectangles. Figure
21 (a) plots the configuration of the rectangles that cover the unit circle in the first
quadrant in our formulation of the optimization problem. Next, we note that Figure 21
(b) represents another configuration of the rectangles that leaves the optimal solution
unchanged as in Figure 21 (a). Also note that by doing so, we have not changed the
number of rectangles, as was discussed in section 2.4 where we first formulated our
problem stating the equivalence between the forms in Figures 5 (a) and (b). Finally
note that how we can directly obtain the solution for the unit circle in all the four
quadrants by first adding the reflection of Figure 21 (b) about the plane x = 0 and
then the adding the reflection the resulting figure about the plane y = 0 to get the full
configuration. This is plotted in Figure 21 (c).

Once the SCC using N rectangles is known for the unit circle on all the four quadrants,
we can easily find the SCC for any ellipse of semi-major and semi-minor axes given
by a and b respectively. One can do this by simply performing a scaling of the X and
Y axes appropriately (x ← ax , y ← by). For example, in Figure 22 we show how
such an extension can be done for a = 2 , b = 1. As a result of this transformation,
the unit circle transforms into the desired ellipse and the rectangles also get stretched
appropriately. Needless to say, this transformation preserves the SCC property of the
rectangles and is in fact the optimal solution for the desired ellipse that minimizes the
area outside the ellipse. This fact was discussed before.

Figure 22: The SCC using N = 8 rectangles for an ellipse with semi-major and semi-minor axes lengths
a = 2 and b = 1 respectively, that minimizes the area outside the ellipse.

29

CME 304 Project, Winter 2016 Rahul Sarkar

5 Future Work

Some cool results have been generated by running the program on super-ellipses which
are described by equation (17). However, the results are in unstructured form and more
study needs to be done. Hence we avoid putting them here. Some pictures will be sent
at a later date. ∣∣∣x

a

∣∣∣α +
∣∣∣y
b

∣∣∣β = 1 , α > 0, β > 0 (17)

6 Acknowledgements

I’d like to thank Carlos for excellent exposition of some very important and difficult
concepts pertinent to numerical optimization in his office hours for the course CME 304.
I’d also like to thank Prof. Walter Murray for making this project an essential compo-
nent of the course. Trying to implement computer programs to solve the problem really
taught me a great deal about some of the major difficulties that one encounters during
program execution like limits of finite precision floating point arithmetic, performance
issues with inefficient line search routines, trade-offs necessary to solve problems in a
reasonable amount of time with limited memory and computing resources etc.

References

[1] Nocedal, Jorge and Wright, Stephen, 2006, Numerical optimization: Springer Sci-
ence & Business Media

[2] Gill, Philip E and Murray, Walter and Wright, Margaret H, 1981, Practical opti-
mization: Academic press

[3] Murray, Walter, 2016, Numerical Optimization CME 304 course lecture notes

30

