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Abstract—Bayesian structure and parameter learning can be
used in predicting the probability of whether a breast tumor is
malignant or benign. Bayesian structure learning is implemented
using a K2 Search over the space of diagonally acyclic graphs
(DAGs) to obtain a Bayesian structure with a higher Bayesian
score than that of the Bayesian network corresponding to the
Naive Bayes model. We can model the conditional probability
distributions (CPDs) for the continuous observed features, as
gaussians and the discrete class label as Bernoulli distributed.
Parameter learning using maximum likelihood estimation (MLE)
is used to learn the mean and variance for the continuous CPDs
and the observed counts for the discrete probabilities. A key
advantage of this method is that it can be used for feature
selection to reduce the dimensionality of the space. d-separation
and the chain rule are used to eliminate variables conditionally
independent from the class c. Various metrics are used to
compare the methods, where probabilities are weighted with less
negative effect than misclassifications and a reward function is
defined to see which methods have more false negatives, the
more dangerous outcome in this application. Precision-recall
and ROC curves are also utilized to compare the methods and
see the relation between rounding these probabilities at various
thresholds.

I. INTRODUCTION

A. Problem Description

Decision making under uncertainty has a wide variety of
applications in scientific computing. One particular application
in the biological sciences to be investigated is in regards to
predicting whether a breast tumor is malignant or benign.
Even though there are predictive medical procedures that are
available for diagnosis, one test may not be definitive enough
and there can be error margins of either false positives or false
negatives. An algorithm which could take into account many
test diagnostics and make a prediction has potential to have a
broad impact in the medical field. In fact, the medical literature
is already becoming rich in such methods as seen in [1], [2],
[3], [4], with the potential goal of patents having to undergo
fewer extensive tests. It is clear that some features are very
predictive, such as the size of the tumor, but only considering
this feature cannot give definitive results.

The comprehensive dataset utilized is available from the
Breast Cancer Wisconsin (Diagnostic) Dataset on the UC

Irvine Machine Learning Repository [5]. The dataset is fairly
rich in examples with m = 569 patients. It consists of a matrix
with 32 columns, where each row consists of a patient sample.
For a given row, the first such column is the patient ID and so
ignored in this study and the second column is the label M for
the malignant class, c = 1 and B for benign class, c = 0. The
remaining n = 30 columns consist of the observation vector,
o ∈ Rn. There are ten distinct continuous observations, namely
the radius, texture, perimeter, area, smoothness, compactness,
concavity, concave points, symmetry and fractal dimension
[5]. For each of these, the mean, standard error and worst
case measurements are reported, where the first ten columns
correspond to the mean, columns 11-20 correspond to the
standard error and columns 21-30 correspond to the worst case
measurements. The class distribution is given by 357 benign
samples (∼62.7%) and 212 malignant samples (∼37.3%). The
output is the probability that the tumor is malignant given the
input data, that is p(c1i | oi) for patient i. By analyzing this
dataset, we would like to determine the subset of the observed
features that are the most relevant in predicting this probability.

B. Prior Work

Past work in [1], [2], [3], [4] on this dataset has been
in regards to machine learning classification problems, where
instead of outputting a probability displaying the uncertainty
in the prediction, a label is assigned to the tumor being
malignant or not. This problem reduces to computing the
decision boundary between the malignant and benign sets. It
was shown in [5] that the sets are linearly separable using
all 30 input observed features. Moreover, the best predictive
accuracy, as measured by k-fold cross validation (CV), for
k = 10 was obtained using one separating plane in the 3-
dimensional feature space of worst area, worst smoothness
and mean texture. This was obtained using the common
optimization method, linear programming (LP), as described in
[6]. In particular, the separating plane was computed using the
Multisurface Method-Tree (MSM-T), which is a classification
method that solves a LP to construct a decision tree [7]. The
relevant features were selected using an exhaustive search in
the space of 1-4 features and 1-3 separating planes [5].



In [8], machine learning classification algorithms were
implemented to compute linear decision boundaries, based on
the prior literature’s analysis that the data is linearly separable.
The supervised learning algorithms tested were logistic re-
gression, linear and quadratic Gaussian Discriminant Analysis
(GDA) and Support Vector Machines (SVM). Logistic regres-
sion is a discriminative learning algorithm directly modeling
the conditional probability p(c | o) using a logistic function.
The fitting parameter, θ ∈ Rn+1, including the intercept terms
are computed via the MLE and then an optimization algorithm
is used to find the optimal θ. In GDA, a model is built for
both the malignant tumors, p(o |c1) and for the benign tumors,
p(o | c0). It then learns p(c1 | o) using Bayes’ Rule, namely

p(c1 | o) = p(o | c1)p(c1)
p(o | c0)p(c0) + p(o | c1)p(c1)

. (1)

In linear GDA, the posterior densities are assumed to be mul-
tivariate gaussians with means µ0 and µ1 ∈ Rn and the same
covariance matrix Σ ∈ Rnxn, as calculated using MLE counts.
The prior, p(c), is assumed to be Bernoulli distributed. In the
quadratic case, we have two separate covariance matrices Σ0

and Σ1. Since the denominator is the same for both p(c1 | o)
and p(c0 | o), GDA assigns a positive malignant label of 1
if the numerator of p(c1 | o) is larger than the numerator of
p(c0 | o). Lastly, SVM solves a convex optimization problem
to maximize the distance between the points and the decision
boundary. It is key to desire to maximize this distance, since
the points near the decision boundary represent a higher level
of uncertainty. In this study, the k-fold CV is also computed,
using k = 10 and linear GDA receives the lowest error of
4.46%, using a large number of 29 features. Furthermore, the
error, according to the various metrics, namely hold-out CV
and k-fold CV decreases as the number of observed features
increases until some upper bound. The absolute error counts
the number of misclassifications, namely∑mtest

i=1 |ci − c̃i|
mtest

, (2)

where ci is the exact label, c̃i is the predicted label and mtest
is the test set size. A key limitation of these methods is that
they are forced to make a classification, even if there is a high
uncertainty in the probability. This can lead to a large number
of false negatives or false positives. Moreover, it shows that a
high dimensional feature space is required for the best results.

II. METHODS

The goal of this work is to identify the important features to
reduce the problem from a high-dimensional feature space to
a smaller one. To do so, structure learning is implemented
to learn an optimal Bayesian network and is compared to
the results of Bayesian network from Naive Bayes. MLE is
utilized to estimate the parameters from the network, compar-
ing both continuous gaussian to discrete CPDs. The output
of this method will be the probability of the tumor being
malignant, given the observations connected to the class, c, in
the Bayesian network. Let o ∈ Rn denote the n observations

and õ ∈ Rñ contain the components of o, which are not
conditionally independent of c, as inferred from the Bayesian
network. Then, using the definition of conditional probability,
the desired probability is given by

p(c | o1:n) = p(c | õ1:ñ) =
p(c, õ1:ñ)

p(õ1:ñ)
. (3)

We use our inference methods to infer the joint distribu-
tions using the chain rule for Bayesian networks, namely
p(x1, . . . , xn) =

∏n
i=1 p(xi |paxi

), where paxi
are the parents

of xi in the Bayesian network [9]. By the law of total
probability, the denominator is simply

∑1
c=0 p(c, õ1:ñ). So

p(c, õ1:ñ) is the only probability needed to compute using the
chain rule and then we can simply normalize.

A. Naive Bayes with gaussian CPDs

In this first method, we assume that the Bayesian structure is
known and follows the Naive Bayes model. The Naive Bayes
assumption is that (oi ⊥ oj | c) ∀i 6= j. Thus, the only edges
in this simplified Bayesian network are from c to each of
the observed features, since the observations are conditionally
independent of each other. The Bayesian network for the Naive
Bayes assumption for the first 10 mean observed features is
shown below.

c

radius texture perimeter area smoothness compactness concave points concavity symmetry fractal dim

Fig. 1: Bayes Net for Naive Bayes for mean features

Since c has no parents in this model and each observation,
oi has c as its only parent, using the chain rule we obtain

p(c, õ1:ñ) = p(c)

ñ∏
i=1

p(õi | c) (4)

Thus, our desired probability is as follows:

p(c1 | o1:n) =
∏ñ
i=1 p(õi | c1)p(c1)∏ñ

i=1 p(õi | c0)p(c0) +
∏ñ
i=1 p(õi | c1)p(c1)

(5)
Since we are assuming a specific Bayesian network for this

case, there is only the parameter learning step to compute
these probabilities. Since c is binary, it can only take on 2
discrete values and so it can be estimated by one independent
parameter θ = p(c1), where p(c0) = 1−p(c1). The parameters
are computed using a training set of size mtrain. From MLE
parameter learning,

p(c1) =

∑mtrain
i=1 1(c1i )

mtrain
, (6)

where 1 is the indicator function and so 1(c1i ) = 1, if ci = 1
and 0 otherwise. Thus, this simply reduces to the counting the
number of malignant samples in the training set and dividing
by the total number of training samples [9].

The next step is to determine an appropriate model for the
p(õi | c), for each i = 1 : ñ. From the success of GDA in [8],



it is clear that modeling the CPDs for the continuous features
as gaussians is a good approximation. Thus, we compute the
MLE parameters for a single variable gaussian, namely µ̂1, σ̂2

1

and µ̂0, σ̂2
0 on the subset of the data containing the malignant

and benign samples, respectively. Let mben = mtrain −mmal.
This results in the standard statistical estimates below:

µ̂0 =

∑mtrain
i=1 õi1(c

0
i )

mben
, σ̂2

0 =

∑mtrain
i=1 (õi − µ̂0)

2
1(c0i )

mben

µ̂1 =

∑mtrain
i=1 õi1(c

1
i )

mmal
, σ̂2

1 =

∑mtrain
i=1 (õi − µ̂1)

2
1(c1i )

mmal

(7)

This formula is similar to Equation (1), where the major
difference is that GDA is using MLE to compute multivariate
gaussian parameters and here we are using MLE for a product
of single variable gaussians. Moreover, since the output is a
probability, the denominator is computed in this case.

After using the training data to learn the parameters, we
loop over the test data to predict the probability of malignancy
on anew patient’s tumor given the observations. Thus, for
patient with label c and observation õ, p(õi | cj∈{0,1}) =

1√
2πσ̂2

ij

exp(− (õi−µ̂ij)
2

2σ̂2
ij

). Equation (5) is then utilized for the

final probability.

B. Bayesian Network with gaussian CPDs for mean features

We no longer assume that the Bayesian network is known
and follows a Naive Bayes model. Instead, we use structure
learning to learn a Bayesian network with a higher Bayesian
score than the Bayesian score corresponding to the Bayesian
network for Naive Bayes. We first consider the case of finding
an optimal Bayesian structure for the first 10 mean features.
Since these observed features are continuous, the first step is
to discretize them into a specified number of bins, with the
bin width inversely proportional to the number of bins, namely
max(õi)−min(õi)

nbins
. This was done using an in-house MATLAB

code, but could also be done using the Discretizers.jl

library in Julia. For these experiments, the optimal parameter
for the number of bins was 20. Using the same Gaussian
model for the CPDs and Bernoulli prior for p(c), we will
now compute a Bayesian structure with a higher Bayesian
score than that of Bayesian network shown in Figure 1 for
Naive Bayes. This can be done using the K2GraphSearch

in BayesNets.jl to search over the space of DAGs for
such a graph with a higher Bayesian score than the previous
graph with the appropriate conditional probability distributions
specified for each node. Since the output is dependent on
the ordering of the nodes given, we loop over 1000 random
orderings of the nodes and store the Bayesian network with
the highest Bayesian score, as shown below:
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Fig. 2: Bayesian Net with gaussian CPDs for mean features

This Bayesian network can be used to determine the relevant
observed features, by taking the subset of the observations
with edges connected to c. Using this structure, we can per-
form inference using the conditional independence assumption
that it encodes. Due to d-separation, several features can be
eliminated from the model, reducing the dimensionality of the
feature space. Thus, it is evident since the path contains a chain
of nodes that given o4, area, c is conditionally independent
of o1, radius and o3, perimeter. Similarly, given o7, concave
points, c is conditionally independent of o6, compactness
and o8, concavity. Furthermore, o10, fractal dimension is
unconnected and so is also conditionally independent of c.
Thus, our model reduces to p(c | o1:10) = p(c | õ1:5), where
õ = (o2, o4, o5, o7, o9)

T . Since this subgraph follows the Naive
Bayes assumption on õ, Equations (4) and (5) hold and the
implementation is the same from the prior subsection.

C. Bayesian Network with discrete CPDs for mean features

In this approach, we compute the Bayesian network assum-
ing that the CPDs are discrete. As in the prior subsection, the
first step is to discretize the continuous observations into 20
bins. We assume that each observation remains discrete and
can assume integer values from 1 to 20. For this we use an in-
house MATLAB code to find the optimal Bayesian network,
given discrete distributions. We begin with a graph containing
nodes (c, o1:10) over the first mean features to compare to the
method in the prior subsection. Given a random ordering of the
nodes as input, we loop over the predecessors of each node
and add a parent to the node that maximizes the Bayesian
score [9]. We loop over 1000 random orderings of the nodes
and return the DAG with the highest Bayesian score. The
computed Bayesian network with a Bayesian score for this
discrete model of -12,111.62 is shown below.
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Fig. 3: Bayes Net with discrete CPDs mean features

Note that this is larger than the -13,473 Bayesian score
for the discrete CPD model of the Bayes Net from Naive
Bayes. Using the d-separation properties, it is evident that c
is conditionally independent from every node, except for con-
cavity, texture, area, smoothness and symmetry, reducing the
dimensionality from 10 to 5. So, we have p(c|o1:10) = p(c| õ),
where õ = (o4, o9, o2, o5, o8)

T . Using the chain rule, we get:

p(c, õ1:ñ) =

4∏
i=1

p(õi | c)p(c | õ5)p(õ5) (8)



Thus, our desired probability p(c1 | o1:n) is as follows:∏4
i=1 p(õi | c1)p(c1 | õ5)∏4

i=1 p(õi | c0)p(c0 | õ5) +
∏4
i=1 p(õi | c1)p(c1 | õ5)

(9)

Note that p(õ5) cancels from the numerator and denomi-
nator, since it does not depend on c. To perform inference,
we must first learn the parameters from the network. For each
i, we must compute p(õi | c). Since c is binary and õi can
take on 20 values, this can be represented by 38 independent
parameters, using the fact that probabilities sum to 1. The MLE
parameters θ̂k = p(õki |c) are simply the observed counts in the
data, where õi = k corresponding to the appropriate malignant
and benign samples, as given below:

p(õki | c1) =
∑mtrain
i=1 1(õki , c

1
i )∑mtrain

i=1 1(c1i )
=

∑mtrain
i=1 1(õki , c

1
i )

mmal

p(õki | c0) =
∑mtrain
i=1 1(õki , c

0
i )∑mtrain

i=1 1(c0i )
=

∑mtrain
i=1 1(õki , c

0
i )

mben

(10)

Lastly, to calculate p(c | õ5), we have 20 independent param-
eters, since c is binary and õ5 can take on 20 discrete values.
So,

p(c1 | õk5) =
∑mtrain
i=1 1(õk5 , c

1
i )∑mtrain

i=1 1(õk5)
(11)

Now that we have the necessary parameters to compute the
final probability for new patients, we loop over the discretized
test data and calculate the above probabilities for the discrete
values of õ.

D. Bayesian Network with gaussian pdfs for all features

Since the gaussian CPDs performed better than the discrete
model, as seen in the Results section, we compute an optimal
Bayesian structure using all 30 features, assuming the gaus-
sian model. The computed Bayesian network is given below,
displaying only the nodes not conditionally independent of c.

c
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Fig. 4: Bayes Net computed using all 30 features

Worst area, worst smoothness and mean texture were se-
lected, which were also the features cited as obtaining the
best results in [5]. This resulting Bayesian network also
follows the Naive Bayes assumption that the observations
are conditionally independent of each other. Thus, Equations
(4) and (5) also hold for õ = (o24, o25, o9, o13, o17, o2, o29)

T

and the implementation follows from above. This is a new
contribution from the work in [8], since it only looked at
subset of features, as stored as consecutive elements in the
feature vector, whereas here we have the key features selected
from each category.

III. RESULTS AND DISCUSSION

We define the following metric to compare the various
methods, namely ∑mtest

i=1 (p(c
1
i | õi)− ci)2

mtest
(12)

Due to the square, it penalizes probabilities less than the
maximum error for misclassifications, that is predicting 1 when
ci = 0 or 0 when ci = 1.

For the Naive Bayes method, we investigate the optimal
number of features to obtain the lowest metric. To do so, the
k-fold CV is computed, which only holds out dm/ke of the
training data each time for testing and trains on the remaining
portion. The result is the average of these k = 10 error metrics.
As expected and similar to the findings in [8], this testing error
decreases as the number of features is increased from 20 to
25 to a minimum of approximately 0.06 and then begins to
increase again. We would like to avoid using such a large
feature dimension space to obtain the minimum metric.

Fig. 5: Naive Bayes k-fold CV for various number of features

The results for the various methods are summarized below:

TABLE I: Probability Metric Results

NB 10 Gaussian 10 Discrete 10 Gaussian 30

Training Error 0.0743 0.0559 0.0404 0.0456

k-fold CV 0.0781 0.0625 0.0803 0.0520

For the first three methods, we only consider the first 10
mean features and in the final method, we consider all 30
features. The first row is the training error, which is simply
training on the entire dataset and then using this training set as
our test set. The training error should clearly be lower than the
k-fold CV in every case. The k-fold CV is more informative on
the effectiveness of the method because it shows the method’s
potential to generalize, which is the desirable feature that given
a subset of the dataset, it can properly diagnose new patients.

The discrete CPD method using the first 10 features to
calculate the Bayesian network has the lowest training error,



but the highest k-fold CV test error. This illustrates one of the
negative effects of using MLE parameter learning for a limited
dataset. If the training set data has no occurrence of õi = k
and the given c value, then it falsely assigns a probability of 0.
This increases the number of false negatives, as indicated by
the lower recall for this method in Table II. The training set,
on the other hand, is representative of each observation having
the discrete values. A Bayesian parameter learning approach
with Beta and Dirichlet distributions to represent these counts
from the dataset [9] may lead to improvement. With Naive
Bayes we need a large number of features, 29 to be precise,
to obtain a k-fold CV error of approximately 0.06, whereas
with structure learning to learn the Bayesian network of c and
the observed features, there are only 7 key features resulting
in a k-fold CV error of 0.0520.

Another key component of this research is determining how
to choose the appropriate class, using the probability as well
as other factors specific for this application. Thus, we need to
round the probabilities according to some threshold parameter,
ε. If p(c1 | õ) ≥ ε, we diagnose a malignant tumor with label
c̃ = 1 and if p(c1 | õ) < ε, we diagnose a benign tumor with
label c̃ = 0. The simplest ε to choose as a first attempt is 0.5.
Using the k-fold CV and rounding to compute the labels c̃, we
calculate the precision, which is a measure of the number of
false positives, the recall, which is a measure of the number
of false negatives and the specificity. Precision depends on the
computed class label and is defined as p(c1 | c̃1) = TP

TP+FP ,
where TP is the number of true positives and FP is the
number of false positives. Recall and specificity depend on
the exact label and are defined as p(c̃1 | c1) = TP

TP+FN and
p(c̃0 | c0) = TN

FP+TN , respectively, where FN is the number
of false negatives and TN is the number of true negatives.

TABLE II: Precision, Recall and Specificity for ε = 0.5

NB 10 Gaussian 10 Discrete 10 Gaussian 30

Precision 87.16% 93.18% 90.60% 91.16%

Recall 87.81% 87.35% 83.71% 88.37%

Specificity 94.69% 97.10% 96.04% 96.67%

Is is evident that the Bayesian network over all 30 observa-
tions from the gaussian CPDs has the highest recall. We now
investigate different values of ε to increase the recall, since
the decision should take into account the consequences of a
misclassification, rather than just rounding up or down [9].
In this case, a false negative has higher consequences than a
false positive because diagnosing the tumor as benign when
it is really malignant could be deathly, whereas for a false
positive more tests may be required to confirm. In the below
figure, we vary ε from 0.001 to 0.999, with equally spaced
intervals of 0.001 and plot the precision versus the recall for
each ε. The small values of ε correspond to the highest recall
and lowest precision. Thus, as ε is decreasing from 0.9999 to
0.001, the precision is decreasing with respect to the recall.
This makes sense, since a large ε implies that we label more
benign samples and so we do not have as many false positives

and a small ε means that we label more malignant samples
and so we do not have as many false negatives.

Fig. 6: Precision-Recall Curve for various ε

From this curve, we see that the Bayesian network computed
using Gaussian CPDs with all 30 features is clearly the
preferable method, since for the same recall, it has higher
precision. For example, if we require a recall ≥ 90% using
this method, from the plot we can compute the desired
tolerance with the maximum precision. For example, ε = 0.32
corresponds to 90.82% recall and 89.83% precision. If we
require a higher recall of at least 95%, then we round up to
malignant for every probability greater than ε = 0.0650. The
corresponding precision is 83.96% for a recall of 95.28%.
Since the precision does not drop drastically with such a low
tolerance, this indicates another key feature of this method that
it does not contain many uncertain probabilities around 0.5.
Thus, there are several values near the extreme values of 0
and 1, unaffected by this rounding.

Fig. 7: ROC curve for various ε



The ROC curve above is another useful curve in measuring
the comparative effectiveness of each method for classification.
It plots the recall, that is, the true positive rate, versus 1 −
specificity, that is, the false positive rate. It is evident again
that the Bayesian network computed from the 30 features with
gaussian CPDs performs the best. This is indicated, since it
has the steepest curve, representing a high positive rate with a
low false positive. This shows that all the methods form good
separators, since a random classifier would be given by the
line connecting (0,0) and (1,1).

Lastly, we consider a reward system, which assigns a reward
of −1 to a false negative and −λ for 0 ≤ λ ≤ 1 to a false
positive. We vary λ and compute the plots for the various
methods. We can define the following reward metric,∑mtest

i=1 (ci(1− p(c1i | õi))2 + λ(1− ci)p(c1i | õi)2)
mtest

. (13)

It is again clear that the Bayesian network from the gaussian
CPDs over all 30 features has the largest reward regardless of
the value of λ. This also illustrates that the initial gap between
Naive Bayes with 10 features and the Bayesian network from
the gaussian CPDs over 10 features is much smaller than
the final, revealing that Naive Bayes has a smaller number
of misclassified negatives than misclassified positives. On the
contrary, the gap is large for Discrete Bayes Net and Naive
Bayes initially, indicating that Discrete Bayes Net has a larger
number of misclassified false negatives than false positives,
due to the small gap at λ = 1 This was explained due to the
MLE discrete parameter learning and lack of data for every
bin. Note that for λ = 1, we get the negative k-fold CV testing
error from Table I.

Fig. 8: λ reward metric curve

IV. CONCLUSION

The benefits of returning a probability, rather than a classi-
fication are clear because it identities the predictions with the
highest uncertainties. Physicians can utilize these probabilities

to only diagnose the disease if it is within some confi-
dence level and for probabilities around 0.5 to recommend
further testing. Various rounding and reward techniques can
be investigated to determine a desired threshold to achieve
a specific recall or precision. It is clear from the results
that gaussians are good approximations for the conditional
probability distributions of the continuous observed features.
We see that utilizing structure learning can greatly improve
upon the Bayesian structure corresponding to the Naive Bayes’
assumption, by reducing the dimensionality of the problem
and the error metric. This study also shows that using the
mean features is not enough, since the worst case and standard
error measurements are also valuable, by displaying the better
performance of the structure and parameter learning using
all 30 features, rather than just the first 10. It is also clear
that using a discrete model with MLE estimates does not
generalize as well to the test data for values of the discretized
variables that are present in the test and not in the training
data. Future work consists of experimenting with different con-
ditional probability distributions, such as in hybrid Bayesian
networks, where the variables are a mix of discrete, that is,
c and continuous variables, the observed features. Potential
distributions include logit and probit models.

It is evident that there are promising results in the area
of applying decision making under uncertainty and machine
learning to the realm of cancer diagnosis for potential use
in collaboration with established medical tests and to help
avoid evasive diagnostic tests on patients. This is yet another
example of a promising connection between the scientific
computing and medical fields.
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