
Using Numerical Optimization Methods to find
Hamiltonian Cycle in Directed Graph

Danielle C. Maddix
CME 304 Numerical Optimization

Final Project

March 20, 2014

1

1 Introduction
We use the methods of continuous numerical optimizations, which assumes an objective
function f has continuous first and second derivatives to solve a famous NP-complete problem
from discrete mathematics, namely the Hamiltonian Cycle problem. A directed graph defined
as G(V,E), where V is the set of notes and E is the set of edges has a Hamiltonian cycle
if it contains a cycle, which visits each node exactly once. Thus, the length of this simple
cycle must be N = |V |. This is related to the famous Traveling Salesman problem, which
states to find the minimum cost path of a salesman who visits every city exactly once. In
later sections, we will discuss the specific problem formulation, numerical methods used and
the computational/numerical challenges faced in the different problem formulations.

2 Problem Description
From the work in [1], it can be shown that minimizing the below objective function can be
used to solve this Hamiltonian cycle, subject to certain linear constraints.

minimize
x

ϕ(x)

subject to x ∈ S.
(1)

x ∈ RM , where M = |E|, consisting of the edge transion probabilities xij, (i, j) ∈ E. The
objective function ϕ is given below as:

ϕ = det(I − P (x) +
1

N
eeT), (2)

where e is the one-vector and P (x) = D−1A, where Dii = 1/deg(vi) ∀i and A ∈ RNxN is the
adjacency matrix of G. In terms of x

P (x)ij =

{
xij, (i, j) ∈ E
0, otherwise

(3)

One challenge is that it requires the global minimum, x∗, to be found rather than the local
minimum. One common problem is that depending on the initial problem, an algorithm can
get stuck at a local minimum and not be able to find the global minimum.

As shown in [1], if ϕ(x∗) = −N , for global minimizer x∗, then we have found the Hamil-
tonian cycle. Moreover, if ϕ(x∗) = −N , then the graph has no Hamiltonian cycle. Of course,
to solve this discrete problem using continuous relaxation, we must round our solution x, to
get a feasible binary solution of 0’s and 1’s, where xij = 1 indicates that edge (i, j) is in the
Hamiltonian cycle and xij = 0 indicates that edge (i, j) is not.

As discussed above, we are minimizing a nonlinear objective function, subject to a set of
linear equality and inequality constraints. We test the problem for three different constraint
sets:

2

1. Stochastic Constraints : x ∈ S ⇐⇒ xij ≥ 0 and rows of P (x) sum to 1

2. Doubly Stochastic Constraints : x ∈ DS ⇐⇒ xij ≥ 0 and rows and columns of P (x)
sum to 1

3. Additional Constraints added to S

We will discuss the advantages and disadvantages of each set of these different constraints,
as well as describe constraint 3 in the results sections.

3 Overview of Methods

3.1 Line Search

One key module needed in solving a nonlinear optimization problem is a line search module.
Given a descent direction pk, maximum step length, αm, current iterate xk and current
function and gradient values, a line search computes a feasible step length αk which will
result in sufficient decrease for the objective function. Note that pk is a descent direction
if and only if pTk gk < 0, where gk is the gradient of the objective function, F evaluated at
xk. For appropriately chosen α this will guarantee that for an objective function, Fk+1 < Fk.
The next iterate is computed in the below update:

xk+1 = xk + αkpk (4)

At first, a simple line search backtracking algorithm was implemented. It checked that the
Armijo condition, defined below was satisfied and if not it reduced the current αk by 0.5.
The Armijo condition guarantees descent in the objective:

F (xk+1) ≤ F (xk) + µαkg
T
k pk (5)

This is known as a crude line search, where 0 < µ < 1. Note µ was chosen to be 10−4, as
indicated in [3].

A good initial value for αk is one. Thus, initially αk = min(1, αm), since it cannot be
larger than the maximum step length, otherwise constraints can be violated. A unit step
length is desirable, since Newton’s method is when αk = 1 and pk = −H−1gk, resulting from
the quadratic model from the Taylor series minF = min gTp+ pTHp. So, ∇F = g+Hp = 0
if and only if p is defined as above. Newton’s Method results in quadratic convergence,
which is a very desirable property. Note that Newton’s method has only local convergence
properties, which requires a good initial point. However, Modified Newton, which we will
utilize, combines Newton’s Method with a linear search and constructs a positive definite
modified Hessian, and is globally convergent. The method will be described in more detail
in the later section on Modified Newton and Directions of Negative Curvature. Thus, in
order to observe the quadratic convergence of Newton’s when x is approaching x∗ a unit step
length should be used.

3

The flaws in this method is that it does not include the below strong curvature condition,
which results from doing an exact line search, that is minimize

α
F (xk + αpk)

|g(xk + αkpk)
Tpk| ≤ ηgTk pk, (6)

where 0 ≤ η < 1 and η = 0 corresponds to an exact line search. This curvature condition
ensures that αk is not too small. Moreover, it is advantageous to implement for functionality
with using the BFGS Quasi Newton Method, which requires yT s > 0 for y = gk+1 − gk and
s = αkpk [2]. The curvature condition from Equation 6 cannot be used alone, since it does
not guarantee descent. Thus, the Wolfe conditions combine the above Armijo conditions from
Equation 5 and the curvature condition from Equation 6. Denote αk satisfying the Wolfe
conditions, as αk ∈ Γ(µ, η).

Thus, a bisection and bracketing line search, which guarantees that the Wolfe conditions
are satisfied is utilized. This method was throughly tested on simple unconstrained nonlinear
functions, where the descent direction p = −g for steepest descent and p = −H−1g for
Newton. The key in guaranteeing that the algorithm works correctly is to test each module
individually.

Also, additional features were added to the line search code to give warnings of potential
errors in other functions, such as an exception being thrown if pk is not actually a descent
direction, by checking the sign of the inner product of pk and gk. Moreover, since the line
search is the most likely part of the algorithm that could be break down, it should only be
doing at most 10-20 iterations in early iterations. An exception is then thrown if a step
requires more than 30 line search iterations.

Below we summarize the results using Newton and steepest descent, where the line search
succeeds for both methods on the first simple convex function and breaks down and exits for
steepest descent on the Rosenbrock function f(x1, x2) = (1−x1)2+100(x2−x21)2 [4], which is
known as a quadratic function for which steepest descent has difficulties. Both functionalities
of the line search module must be tested for use within the larger program. Note that in the
unconstrained case, αm is set to be infinite.

Our simple simple quadratic test function is f(x1, x2) = (x1 − x2)4 + 2x21 + x22 − x1 + 2x2
[6]. Recall the first order and second order optimality conditions for unconstrained minimizer
is that g(x∗) = 0 and the Hessian evaluated at x∗ is positive definite. Hence, termination
when the gradient is less than a tolerance of 10−8, which is approximately the square root of
machine precision. Steepest decent takes 35 iterations to converge linearly within the above
tolerance, whereas Newton only takes 4 iterations to converge quadratically.

4

In optimization, the key is not just the final solution xk but also the sequence of iterates
along the way, including the function values, step length, norm of gradient and norm of
descent direction for unconstrained. It is important to check that the objective is actually
decreasing. Below is a comparison of the output from the first eight iterations of steepest
descent and Newton on the above test function. Note that the unit step length is chosen for
Newton in every iteration, except for the first one. Below is the output of steepest descent
and Newton, when tested on the Rosenbrock function with initial point x0 = [1.2; 1.2]. The
Rosenbrock function is known to have the exact global minimizer, x∗ = [1; 1] and so we can
calculate the error at each step as ‖xk − x∗‖. To exhibit quadratic convergence, we must
have ‖xk+1 − x∗‖ ≤ c‖xk − x∗‖2 Again, note the unit step length selection for Newton. This
case of steepest descent shows that the line search will terminate when too many iterations
have occurred.

5

(a) Steepest Descent Iterates (b) Newton Iterates

Figure 1: Contours of Rosenbrock function

We can create the above contour plots of the Rosenbrock function and plot the iterates,
choosing not to stop the line search for steepest descent. The success of using Newton over
steepest descent on this function is clear, as shown in the above Figure 1 [4]. Note that the
condition number indicates that the Hessian is almost ill-conditioned, which is also reflected
by the contours.

3.2 Calculating Search Direction: Directions of Negative Curvature
and Modified Newton

When solving a problem based on a quadratic model, there are several possible choices for the
matrix Bk, where the search direction pk = −ZkB−1

k ZT
k gk. Note that this is for the linearly

constrained case. For unconstrained, Zk would be removed so equal to the identity matrix,
I. For steepest decent, Bk = I, but as discussed above, steepest descent does not possess
some of the desired properties of Newton. It is also possible to use a Quasi-Newton method,
such as BFGS, in which Bk is an approximation to the Hessian. This is a desirable approach
in general. However, when given second derivative information, it is generally a good idea to
take advantage of it, even though it may be more computationally expensive. In particular,
for the Hamiltonian Cycle problem, directions of negative curvature are extremely important
for reducing the objective ϕ [1].

Thus, we utilize a Modified Newton type method, which computes the Newton search
direction pk and a direction of negative curvature dk. By of indefiniteness, ∃ some nonzero
vector dk, such that dTkHkdk < 0. A direction of negative curvature can be used to move off
of a stationary point, which is not a minimizer or at any other time in the algorithm, since
it does define a descent direction, as long as the sign is chosen correctly. If dTk gk > 0, we set
dk = −dk to guarantee that it is a descent direction. Thus, a good clear direction of negative
curvature dk would be the eigenvector corresponding the largest negative eigenvalue. This

6

can be found by simply doing a spectral decomposition of the Hessian, Hk.
So, to compute dk we first check if the Hessian, Hk is indefinite, that is, if it has any

negative eigenvalues. If it does, we set dk as discussed above. It is possible to combine pk and
dk by using a linear combination, such as xk+1 = xk+α2

kpk+αkdk [2]. Thus, we also compute
a modified Hessian matrix, Bk so that the search direction pk can be computed uniquely.
Hk = UΩUT , since Hk is symmetric, its eigenvalue decomposition exists. We simply modify
the diagonal eigenvalue matrix, Ω, by setting the diagonal elements to be Ω̄ii = max(|λi|, δ)
for some positive δ on the order of 10−8, denoting the smallest tolerance for positive. δ is
critical in preventing the eigenvalues from being 0 and so preventing the resulting matrix
from being positive semi-definite, since we need it to be invertible. Hence, Bk = UΩ̄UT ,
which can then be used to compute the Modified Newton search direction.

Since the problem we are testing it on is relatively small, that is, a graph with about 10-20
nodes and a determinant is used to calculate the objective, which is very computationally
expensive, it is not necessarily important in this case to optimize the other linear algebra. It is
clear that a majority of the computations will be spent in evaluating the objective, its gradient
and Hessian at each iteration. Thus, in this problem it is sufficient to use an eigenvalue
decomposition. In larger problems, however, the Modified Cholesky algorithm [2] to compute
Bk would be more appropriate, where Bk = Hk + Ek = RT

kRk, for upper triangular matrix
Rk, which will produce a bounded matrix and so not ill-conditioned. Modified Cholesky can
also be used to compute directions of negative curvature by simply doing an upper triangular
solve, Rkdk = rsses, where es is the one vector and rss corresponds to negative âss [2].

3.3 Active Set Method

Now that the line search module has been properly tested, the Feasible Point Active Set
Method module must be tested on a nonlinear objective with linear constraints Ax ≥ `.
This is an equality quadratic program (EQP) method, since it uses a quadratic model and is
based off the method for linear equality constraints. The task is to approximate the active
set, which is the set of equality constraints, Ax = `. This may never be known exactly,
but we select a working set of constraints A to be treated as equality constraints, such that
Ax = b, which b is the corresponding entries in `. Thus, we must have methods for adding
and deleting constraints from the active set [2].

In feasible point active set methods, the solution has two phases, that is, the first phase
determines a feasible point and the second phase finds a sequence of feasible points that
converge to a solution. Note that feasible means that an iterate xk does not violate any
constraints. At each stage, the current iterate xk satisfies the constraints in the working set
exactly, Akxk = bk and the quadratic program subproblem is defined below:

minimize
p

gTk pk +
1

2
pTkBkpk

subject to Akpk = 0.
(7)

Let Z be a matrix consisting a basis for the null space of A. Then, the optimality conditions

7

are similar to that as in the unconstrained case, except now they are in terms of the reduced
gradient, ZTg and reduced Hessian ZTHZ. Clearly, x∗ must be feasible, so Ax∗ ≥ `, with
Ax∗ = b. Now the reduced gradient must be 0, which we will use of subspace termination
convergence criteria . Thus, ZTg∗ = 0 ⇐⇒ ATλ∗ = g∗, since the null space of A and row
space are orthogonal. The vector λ∗ is the lagrange multiplier and we require λ∗ ≥ 0. The
sign on the lagrange multiplier is key when a constraint is being considered for deletion from
the working set. Lastly, for sufficient condition the reduced Hessian must be positive definite.
Note that this is actually a weaker condition than in the unconstrained case, since it requires
the Hessian to only be positive definite in the null space of the constraints, rather than in
the entire space.

3.3.1 Finding Initial Feasible Point and Initial Working Set

It is first important to find an initial feasible point x0. Such an x0 must satisfy Ax0 = b and
x ≥ 0.

minimize cTx
subject to Ax = b

l ≤ x ≤ u,

where c is the 0 zero vector and there is only a lower bound l = 0 on x. Then we simply
use Matlab’s linprog function to solve it. Note that for numerical reasons and in the doubly
stochastic case, we want x to be bounded away from 0, so l is set to be ε for some small
ε > 0. Requiring that x ≥ ε bounds x away from 0 and also the boundary. Note that an
initial feasible point can also be found by an active set strategy, by minimizing the set of
violated constraints.

Once we have a feasible point, we can use it to construct the initial working set A to find
the equality constraints. Clearly the matrix A will first consist of all the guaranteed equality
constraints and so the number of equality constraints, numeq must be stored. These equality
constraints cannot be deleted, since these are the constraints that we are certain to be active.
As will be seen in the case of doubly stochastic constraints, DS, it is important that this
matrix have full row rank, since when we solve for the lagrange multiplier estimates, as
described in the deleted constraints section, we use the matrix AT and would like a compatible
system. Thus, we go throughout he matrix A row by row and delete the linearly dependent
rows, so that the resulting matrix has full rank and has the same row space as the original
matrix.

Let I be a vector, which consists of the indices of active constraints. To determine which
rows we should add to the initial working set from the inequality constraints, we simply
check if A0x0 = b0. Since, we are solving this numerically we need to check that they are
equal within some tolerance close to machine precision, εm = 10−16. For these corresponding
indices we add these indices to I and the corresponding rows to A and elements to the right

8

hand side matrix b. It is important that we add these below the actual permanent equality
constraints.

Note that a function has been created to calculate the initial feasible point, another
function has been created to calculate A0, I0 and b0 and one to ensure that the matrix of
equalities has full rank. Each were tested on simple matrices to guarantee that the initial
processing is correct.

3.3.2 Computing Maximum Steplength

Contrary to unconstrained problems, a maximum step length, αm is required for the line
search to ensure that the step taken will not violated one of the constraints and so will
remain feasible. The problem is to ensure that xk+1 = xk + αkpk remains feasible. Let i be
an index of constraint that is not in the current working set, that is, i /∈ Ik. The important
part is that check the sign of aTi pk, since we require Ax ≥ l. If aTi pk ≥ 0, the constraints will
not be violated by linearity. However, if aTi pk ≤ 0, there is a maximum step αm where the
constraint becomes binding, that is aTi (xk + αmpk) = 0. Thus,

αm =

min(
`i − aTi xk
aTi pk

), if aTi pk < 0 ∃i /∈ Ik

+∞, if aTi pk ≥ 0 ∀i /∈ Ik
(8)

This equation was used in the the simple function called computeAlphamax, which returns
αm, which can be termed as the step to the nearest constraint. The index of this constraint is
also returned and will be used in the adding constraint section [2]. Once the maximum step
length and search direction have been computed, the line search module is called to compute
αk. This function was tested separately on simple matrices to ensure that it worked properly.

3.3.3 Adding constraints

After computing xk+1 as described in the above section, it is necessary to check whether an
inequality constraint has been hit and if so to add it to the working set, Ak. It is clear that
if α = αm, a constraint has been hit. If more than one has been hit, we arbitrarily choose
which one to add to A. The order in which the constraint is added is important. Whenever,
a new constraint is added to Ak, it is added to the last row, not to interfere with the first
numeq equality constraints. Clearly, the number of rows of Ak, denoted by m increases by
one. The corresponding index of this constraint is added to Ik and corresponding value added
to bk. A new nullspace, Zk, of Ak must also be computed. The computation of Zk can be
done efficiently since Zk = [Zk z], where z is the nullspace of [A;ZT

k].
As noted in Lemma 2.2.3 from [2], the working set will stay linearly independent when a

constraint is added because for ai, i /∈ Ik, such that ai is a linear combination of the rows of
Ak. Then, by definition of linear dependence ∃ a nonzero vector v such that ai = ATk v. So if
Akpk = 0, then aipk = vTAkpk = 0 ≮ 0 and so by the definition of αm given in the previous
section, the dependent constraint ai will never be added to the working set.

9

3.3.4 Deleting constraints

The EQP method consists of two loops, the outer loop continues until we have reached
subspace convergence as indicated by the norm of the reduced gradient, ZT

k gk and where
the signs of the all lagrange multipliers λ corresponding to constraints that can be deleted
are positive. The inner loop has been described in the previous sections, where the search
direction pk is computed, then αm, followed by a Wolfe line search for αk and the iterate is
updated. If a constraint is hit, then it is added as described above. The subspaces convergence
criteria is that ‖ZT

k gk‖ ≤ ε‖ZT
0 g0‖ for ε = 10−2.

Once subspace convergence has been reached, the outer loop is entered and the impor-
tance of checking whether or not to delete a constraint is essential. The lagrange multipliers
are utilized in the process. By the first order optimality conditions, we know that ATλ∗ = g∗,
so we can approximate it by solving the system ATk λ = gk for the first order multipliers or
to get the second order multipliers we solve ATk λ = Hpk + gk. The first order multipliers are
compatible with the search direction from steepest descent and BFGS, whereas the second
order multiplier are compatible with Newton. Once the lagrange multipliers have been com-
puted, the constraint corresponding to most negative multiplier is deleted. Note that we only
consider the entires of λ(numeq+ 1 : end), since the first numeq equality constraints cannot
be deleted. If all of the elements in λ(numeq+1 : end) are positive, the algorithm terminates
with a minimum, as guaranteed by the optimality conditions. Otherwise, the constraint cor-
responding to the most negative lagrange multiplier estimate is deleted, and corresponding
index and values from Ik and bk, respectively. Thus, the number of rows of Ak, m decreases
by one and the dimension of the null space of Ak increases. The new nullspace, Zk = [Zk z],
is computed as in the adding constraints section, for z is defined in that section. We then
set ‖ZT

0 g0‖ = ‖ZT
k gk‖, as the new reference for the next subspace convergence subproblem

in the inner loop.
This is a part of the algorithm, where experiments can be conducted, in terms of how

to delete a constraint. Since we are using a direction of negative curvature if one exists
or modified Newton for our search direction, it is not proven that a direction of negative
curvature will stay feasible with respect to the deleted constraint, when using either multiplier
estimates. Our approach is to use the first order multipliers. Then, compute the new search
direction pk and check if it remains feasible with respect to the deleted constraint, ai, that is
if aTi pk ≥ 0. If it satisfies this condition, we use this search direction. On the other hand, if
aTi pk < 0, we use the steepest descent direction, where pk = −Zk(ZT

k gk), which is proven to
stay feasible with the first order multipliers. This search direction is then used to compute
αm and in the line search and process continues. One numerical difficulty that can occur is
that elements of pk that are supposed to be 0 are only essentially 0, due to floating point
precision, i.e. on the order of 10−16 or significantly small. Thus, it is good to first set any
small components of pk , which are less than small tolerance, say tol = 10−10 to 0 before
checking if the search direction remains feasible with respect to the deleted constraint.

One downside to using the first order multipliers is that they may not be as accurate of
an estimate as the second order estimates. Thus, when checking the sign of σ = min(λ), we

10

only delete if σ is significantly negative, more precisely if σ < −10−6. Otherwise, numerical
and floating point errors could result in a false positive to delete a constraint when it really
shouldn’t be deleted, especially it is close to 0.

It is possible to use the second order multipliers, but a more conservative approach would
be taken, where a constraint is only deleted if Hk is positive definite. Unfortunately, for
the Hamiltonian cycle problem, the Hessian from the objective function ϕ is significantly
indefinite. Another approach would be to use the Hk from Modified Newton and compute
the second order multipliers using the descent direction from Modified Newton and not the
direction of negative curvature. Again, for the objective in the Hamiltonian Cycle problem,
directions of negative curvature are important to follow and in most cases for this problem
seem to lead to the largest decrease in function values. Thus, more work can be explored in
these areas.

3.3.5 Testing Active Set Module

To guarantee that this module worked correctly, it was tested on the below simple quadratic
function. This tests both the adding and deleting of the constraints. The results are generated
below and perfectly match those in Example 16.4 from [3].

minimize (x1 − 1)2 + (x2 − 2.5)2

subject to x1 − 2x2 + 2 ≥ 0,

−x1 − 2x2 + 6 ≥ 0,

−x1 + 2x2 + 2 ≥ 0,

x1 ≥ 0,

x2 ≥ 0,

A =

1 −2
−1 −2
−1 2
1 0
0 1

 , ` =

−2
−6
−2
0
0

Starting with initial feasible point x0 = (2, 0)T , I0 = (3, 5), which indicates the indices of

the rows of A and ` to be in the working set.

11

3.4 Use of Finite Differences to Guarantee Correct Derivatives

A key source of error in optimization problems or even problems in general is doing a simple
mistake when coding the objective function, its gradient, g and its matrix of second deriva-
tives, the Hessian, H. For complicated formulas, it is easy to make a simple error when
typing them. Thus, a good initial test that the gradient and Hessian have been computed
properly is to use finite differences. Three simple submodules were written, one to compute,
one to compute the gradient and one to compute the Hessian. It is especially important for
the Hamiltonian cycle problem, since the gradient and Hessian include complicated formulas
of calculating determinants of sub matrices with certain rows and columns removed. The
forward difference formula for finite differences is given below as derived from Taylor series:

∇F (x)i ≈
F (x+ hei)− F (x)

h
, (9)

where ei is the vector with 1 in the ith position and zeros elsewhere. Thus, after writing the
code to compute the function and the code to compute the gradient, a code check is written
to loop through all the rows in the gradient vector and check that the absolute difference
between the above finite difference calculation and the computed gradient is less than 10−8

for finite difference interval h chosen to be on the order of 10−8, that is on the order of
the square root of machine precision to balance the truncation error, τ and the numerical
calculation error. If the absolute difference is greater than this tolerance, an exception is
thrown. This gives confidence that the gradient was computed correctly.

Once we have confirmed that the gradient was computed correctly, we can again use
forward differences on the gradient to confirm that the Hessian is computed correctly. Let

yi =
∇F (x+ hei)−∇F (x)

h
(10)

For every row we compute the finite difference above y and then loop through all the columns
of H and check whether the absolute difference, |yj −Hij| is within the tolerance of 10−8. If
not, an exception is thrown.

Hence, it was shown that finite differences can be used not only to approximate the second
derivatives in second derivative methods, but also as a check that the derivatives have been

12

coded correctly. For the Hamiltonian cycle problem, the gradient and Hessian passed these
finite differences tests.

4 Hamiltonian Cycle Instance
We create a Hamiltonian Cycle function, which uses the above tools for specific instances
of the initial working set, A0, I0, b0 and initial feasible point, x0. These will be used as
input to the active set method solver, allowing for various cases for the different problem
formulations. The initial feasible point is checked that the equality constraints are satisfied
within a tolerance tolerance by taking their absolute difference and that every element of x0
is positive greater than ε. If not, an exception is thrown. As described above, we then call
the fullrowrank function on the set of equality constraints, which throws an exception at the
end if the newly computed matrix with the same row space is not full rank. Note that if
the matrix is full row rank, it is not modified, as in the stochastic constraints case. We then
store the number of equality constraints numeq, which is equal to the number of rows of A.
A is extended to include the inequality constraints, by including the MxM identity matrix
and ` = [`; εe], where e is the one-vector. Then compute initial working set, Aw0, b0, I0.

We then call a function called generategraph, which takes the number of nodes and degree
for the random-regular graph case, for which the degree is 3 for cubic graphs. Lastly, we
construct ϕ,∇ϕ, and ∇2ϕ and test them with finite differences, as described in the finite
difference system. After this setup, the solver is called.

The resulting rounded xk from the solver is then used to check if it satisfies the Hamili-
tonian Cycle condition and the resulting graph is plotted.

4.1 Generating Cubic and Random Non-regular Hamilitonian Graphs

The Hamiltonian Cycle Problem is tested on random cubic graphs, that is random 3-regular
graphs and random non-regular Hamiltonian graphs. A cubic directed graph has in-degree
equal to out-degree equal to 3 for each node. Almost all regular graphs are Hamiltonian
and so are safe for testing. The latter type of graph is simply a random graph that has a
Hamiltonian cycle. The size of these directed graphs is between 10 and 20 nodes. We use the
matgraph package [5] to generate a random cubic graph, by calling random_regular(g,N,3).
Note that for the cubic graphs, an LP does not need to be solved, since the vector 1

3
e is clearly

feasible. To create a random Hamiltonian directed graph, we just start with a directed cycle
and add edges to it, with probability 0.5, similar to constructing an Erd

′′

osR
′

enyi random
graph.

We utilize the incidence_matrix (g,’signed’) function which creates the incidence matrix
of the directed graph. The incidence matrix, ind ∈ RNxM , of a graph is defined such that
(ind)ij equals 1 for incoming edge ej to node vi, -1 for outgoing edge ej to node vi and 0
otherwise. One sample incidence matrix is shown below for Figure 4 in the Observations
section, discussing the successes and failures of stochastic constraints on a 10 node cubic

13

graph. The incidence matrix is then used in the function, computeP, which is used to create
the transition probability matrix P (x).

4.2 Computing matrices to enforce Stochastic and Doubly Stochas-
tic constraints

A is designed so that its first rows correspond to the equality constraints, as defined by the
stochastic or doubly stochastic constraints. To compute A we utilize the incidence matrix.
For the doubly stochastic constraints, Aij = 1 for all outgoing edges of node i, thus we find
the -1’s in the incidence matrix at position j and set Aij = 1, with corresponding bi = 1. For
doubly stochastic, we also require that the sum of the incoming edges to node i is 1. Thus,
we find the 1’s in the incidence matrix at position j and set Aij = 1 and do the same as
above for the outgoing edges, setting the right hand side equal to 1 at those locations.

Note that x is a vector of edges and Ax = b is requires the rows of P to sum to 1, which it
must since it is a probability distribution, but A can be computed from the incidence matrix
without P . For the stochastic case, these equality constraints define the first N rows of A
and for the doubly stochastic constraints these equality constraints define the first 2N rows
of A. One problem that can occur with the doubly stochastic constraints is that A will not
have full row rank. It actually only has one linearly dependent row, which must be removed.

14

For both constraints, after computing an initial point x0, we check that the rows of P (x0)
sum to 1, by again checking that the absolute difference is on the order of machine precision
and if they do not sum to 1, an exception is thrown. In addition, when the doubly stochastic
constraints are used, we also check that the columns sum to 1 and if not throw an exception.
This is checked on the initial point, as well as on the final solution x∗.

4.3 Constraints added to Stochastic Constraints to Achieve Better
Results

As will be described in the results and observations sections, it is clear that the stochastic
constraints, S have the lowest percentage of success, since they do not require that all incom-
ing edges to a given node sum to 1, which is a property of a Hamiltonian cycle. They only
require that all the outgoing edges sum to 1. Thus, its poor performance is reflected in it
terminating in a local minimum, before reaching the global minimum. However, the stochas-
tic constraints do have certain advantages over the doubly stochastic constraints, since the
rows are always linearly independent and so the equality matrix A has full row rank and will
terminate on a vertex, which is a square constraint matrix. Thus, we desire to add constraints
to the stochastic constraints set to guide it out of this local minimum.

One point to consider is the initial starting point. If the starting point is close to a
local minimum, the algorithm will converge to that local minimum, rather than to the global
minimum, which is one reason why solving for global minimums is more challenging. A
method is needed to prevent the method from getting stuck at the local minimum. Currently,
the initial point is just required to be distance ε from the boundary, which could make it
a biased initial point. We add an additional constraint on the initial feasible point in the
LP solver that it must be equal distance from all the boundaries, making it unbiased and
possibly not as close to a certain local minimum. As seen in the results section, this did
improve the success of the stochastic constraints, but still did not make it as competitive as
the doubly stochastic constraints.

Additional possible constraints to be added could involve specific properties of Hamil-
tonian cycles, which is a similar method as to how the doubly stochastic constraints were
derived from the stochastic constraints. Such properties include adding constraints invoking
the cut of a graph, where the cut S ⊆ V is a subset of the vertices that partitions the vertices
into two disjoint sets. The size of the cut is the number of edges crossing it. A minimum cut
can be found in polynomial time and it is known that a cycle has exactly

(
n
2

)
minimum cuts,

using Karger’s algorithm. However, these constraints may be too computationally expensive
to enforce.

4.4 Rounding

Since we are using a continuous method to solve a discrete problem, where the solution edge
vector x should have entries ∈ {0, 1}, it is important to implement rounding of the xi’s in
our module. Each element is converging to 1 or 0, but at each iteration we can create a new

15

variable, y = round(x), that is

yi =

{
1, xi ≥ 0.5

0, otherwise

We then check if y satisfies the condition that a Hamiltonian cycle has been found, that is
that ϕ(y) = −N , for absolute difference within a certain tolerance and also check that y is
feasible to the equality constraints, since it clearly satisfies the inequality constraints, y ≥ 0.
We observe that rounding can terminate the procedure quicker, since it can potentially find
a rounded solution, before actual convergence occurs. Sometimes a rounded solution can be
found after only 1 or 2 iterations only the smaller 10 node graphs.

4.5 Hamiltonian Cycle Results

We present results on the following 16 node cubic graph and 14 node random non-regular
Hamiltonian graph, using the doubly stochastic constraints. Results from the stochastic
constraints will be seen in later sections. The results indicate that the Hamiltonian cycles
are properly found, as indicated in the plots and by the vectors of edges. Moreover, the given
edge vector shows that the graph is traversing the edges in the correct order, that is, that the
directed edges are all going in the same direction. It is important to note in the output that
the objective function is always decreasing and that neither αm nor α is too small, indicating
infeasibility. Note that in the initial graph plot, each undirected edge represents two directed
edges going in each direction, whereas for the Hamiltonian cycle plot, a edge represents a
single directed edge, as indicated by the below edge set from node i to node j. This plotting
is attributed to the fact that the draw graph in matgraph does not draw directed edges.

(a) Initial Cubic 16 Node Graph (b) Corresponding Hamiltonian Cycle

Figure 2: Cubic graph and a corresponding Hamiltonian cycle from using the Doubly Stochas-
tic Constraints with output and set of edges defining the Hamiltonian Cycle given below

16

(a) 14 node random non-regular Ham Graph (b) Corresponding Hamiltonian Cycle

Figure 3: Random non-regular Hamiltonian graph and its corresponding Hamiltonian cycle
from using Doubly Stochastic Constraints

17

A script, HCscript was written to run the simulation n = 20 times and count the number
of successes. Each time a new random non-regular Hamiltonian graph or random cubic graph
is generated. It is evident from the below table that as the graph gets larger the problem
becomes harder to solve. This is expected, since the number of ways it can go wrong increases
and find local minimum for the stochastic constraints increases. It is important to node that
we are solving an NP- complete problem.

18

.

Table 1: Various Constraints Results
Constraints 10 node cubic 16 node non-regular 20 node cubic
Stochastic 70% 65% 60%

Doubly Stochastic 85% 75% 70%
Additional Constraints 75% 70% 65%

4.6 Observations

4.6.1 Deletion of Constraints

It was noticed that in a majority of the cases run that the algorithm finds a solution without
needing to delete a constraint. In the stochastic cases, where it fails to find the global
minimum, it achieves subspace convergence and find that all the possible lagrange multipliers
that can be deleted are positive and so it terminates. In cases, where constraints are deleted
it is usually near the end of the simulation and only one or two constraints are deleted. Early
termination also occurs due to rounding.

4.6.2 Choice of Using Directions of Negative Curvature and Modified Newton
direction

The effect of using the direction of negative curvature ,dk, as the search direction, the Modified
Newton direction, qk, or any linear combination of the two. Using just qk will work, but it
finds an answer more slowly. Contrary to the general problem, the best method seemed to
be to use dk whenever it was available and not even a linear combination of the two. Thus,
the method used to generate the results always use dk as the descent direction, whenever it
is available.

4.6.3 Variations in Performance with Different Constraint Sets

We can observe that the stochastic constraints can get stuck at a local minimum, as evident
in the simple 10 node example for the graph corresponding to the incidence matrix in the
Generating Graphs section. Here we see that the column sum of P is not 0 and so the sum
of the incoming edges to a given node is not necessarily 1. Without this enforcement, certain
situations, like the one below can occur.

It is clear that node 8 is the problem in the first case, since it has two incoming edges,
leaving node 6 without any incoming edges, as revealed in the below plots and directed edge
sets.

19

(a) Initial cubic graph with 10 nodes (b) Corresponding Hamiltonian Cycle

Figure 4: 10 Node Cubic Graph Failure Case using the Stochastic Constraints

20

(a) Initial cubic graph with 10 nodes (b) Corresponding Hamiltonian Cycle

Figure 5: 10 Node Cubic Graph Success Case using the Stochastic Constraints

In the stochastic case, we are always terminating at a vertex, whereas in the doubly
stochastic case that is not the case. Note that rounding in the doubly stochastic case is not
always defined. A clear benefit to the doubly stochastic case is that it rules out cases like
the above failure example, by forcing the column sum to be 1, it does not get stuck at any
local minima.

21

Moreover, one reason why the doubly stochastic constraints have higher performance and
are more efficient is that a different formulation of the objective can be obtained for the
doubly stochastic constraints. Evaluating the determinants in ϕ makes it run very slow and
difficult for testing.

It can be shown for x ∈ DS and its components from from zero, that is, in the relative
interior rather than on the boundary, as we have enforced that only the leading principal
minor of I − P is needed to compute the objective function and so we may rewrite the
objective function as given below:

ϕ(x) = −Ndet(GNN(x)), (11)

where G(x) = I − P (x) and GNN is G with row N and column N removed. This can be
computed using an LU factorization G = LU without permutations and so we disable the
permutations in matlab’s LU solver and so we get:

ϕ = −N
N−1∏
i=1

uii (12)

The gradients and Hessians are also given in the problem assignment and can be computed
efficiently, without determinants, by doing triangular solves. Note that finite differences was
again utilized to confirm that they were computed correctly.

5 Conclusions
In conclusion, this report and [1] show an exciting and promising applications of nonlin-
ear optimization in solving certain discrete NP-complete problems. The Hamiltonian Cycle
problem has an interesting connection to the famous traveling salesman (TSP). As detailed
in the report, along the way certain numerical difficulties and challenges were encountered
that would not be represented in the theory that assumes a machine with infinite precision.
Problems from machine precision and floating point error had to be handled, such as in the
termination requirement and size of the smallest lagrange multiplier. The key for testing that
the entire problem works was to break it up into small and simple submodules and test those
individually, as we have done. Thus, these small submodules and also the use of throwing
exceptions are essential in the debugging process. It was very interesting to use the methods
we learned in class to solve a practical problem and see the complications that arise and how
to handle them.

22

References
[1] Michael Haythorpe. Markov Chain Based Algorithms for the Hamiltonian

Cycle Problem, PhD thesis, University of South Austrailia, July 2012.
http://www.stanford.edu/group/SOL/dissertations/michael-haythorpe-thesis.pdf

[2] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press.

[3] J. Nocedal, S. J. Wright, Numerical Optimization, Springer Verlag.

[4] Raphael Hauser. Line Search Methods for Unconstrained Optimisation., Lecture 8, Nu-
merical Linear Algebra and Optimisation, Oxford University Computing Laboratory,
MT 2007. https://people.maths.ox.ac.uk/hauser/hauser_lecture2.pdf

[5] Edward R. Scheinerman. Matgraph: A Matlab Toolbox for Graph Theory.
http://www.ams.jhu.edu/ ers/matgraph/matgraph.pdf

[6] Gerhard Dangelmay. 2D Newton’s and Steepest Descent Methods in Matlab.
http://www.math.colostate.edu/ gerhard/classes/331/lab/newton2d.html

23

