
Investigating the Effects of MINRES with Local

Reorthogonalization

Danielle C. Maddix
CME 338: Large Scale Optimization

Final Project

June 5, 2015

1 Introduction

The minimum residual method, MINRES, is an iterative method for solving a n x n linear system, Ax = b,
where is A is a symmetric matrix. It searches for a vector, xk, in the kth Krylov subspace that minimizes
the residual, rk = b − Axk. Due to the symmetric nature, the vectors are computed to be the Lanczos
vectors, which simplifies to a three-term recurrence, where vk+1 is computed as a linear combination of the
previous two Lanczos vectors vk and vk−1. To update the new vector in the (k + 1)th Krylov subspace, a QR
decomposition is maintained and each iteration, we just must compute a new plane or Givens rotation [3].
In exact arithmetic, all the Lanczos vectors are orthogonal to each other. However, the problem that arises
is numerically, this orthogonality is not maintained.

This is contrasted by the generalized minimum residual method, GMRES, which is an iterative method for
solving the same linear system that minimizes the residual, except now A may be an unsymmetric matrix.
Here, the new vector vk+1 in the orthogonal basis for the Krylov subspace is calculated in the Arnoldi
recurrence process, which requires storing all the previous vectors. Thus, GMRES requires more storage and
work than MINRES does. However, some users prefer to use GMRES with a good preconditioner, M , even
on symmetric systems, even though MINRES is designed to take advantage of the symmetric properties.
The reason for this being that since GMRES uses a modified Gram-Schmidt orthogonalization in the Arnoldi
process, the vectors in the basis, Vk, for the kth Krylov subspace remain orthogonal and so do not lose
the numerical orthogonality property as happens in MINRES. Thus, fewer total iterations may be required
of GMRES on the symmetric saddle-point systems than MINRES. Therefore, we investigate a process to
reorthogonalize the vectors in MINRES, by storing an input parameter, localSize of them and explicitly
making the new vk+1 orthogonal to the previous localSize Lanczos vectors. The theory that we will test is
that this will decrease the number of iterations and make MINRES the more preferable method on symmetric
systems, as it was originally designed.

2 Implementation

To add local reorthogonalization to MINRES, we follow the procedure of the local reorthogonalization from
the LSMR algorithm, which is a method to solve rectangular least squares systems using the Golub-Kahan
process, while still minimizing the residual [1] . We first download the minres.m Matlab file from the SOL
website [3]. An additional input and output feature have been added. The additional output, resvec, is
a vector, which simply stores the residual at each iteration for plotting purposes to be shown in the next
section. The additional input is the localSize parameter. Setting localSize = 0 or [] results the regular
MINRES algorithm without any reorthogonalization, whereas on the opposite end of the spectrum setting
localSize = Inf runs a full reorthogonalization of all of the Lanczos vectors. Of course, setting localSize

1

equal to a scalar is the integer number of prior Lanczos vectors stored. The modified function definition is
given below:

function [x, istop, itn, rnorm, Arnorm, Anorm, Acond, ynorm resvec] = ...
minres(A, b, M, shift, show, check, itnlim, rtol, localSize)

In the initialization process, we add an initialization for the local reorthogonalization, using some helpful
boolean variables, localOrtho and localV QueueFull. localOrtho is used to determine whether local re-
orthogonalization is turned on or off. It is initialized to false. It is set to be true, only if the localSize input
parameter is strictly larger than 0. In the case that this holds, localPointer is initialized to 0, which will be
used to mark the column of where the old vk will be stored. Another boolean to be used is localV QueueFull
which tells whether the circular buffer, localV , that stores the localSize number of the Lanczos vectors is
full. This also gets initialized to false. Lastly, localV is the described array initialized to be the zero matrix
of size n x localSize, which stores these previous Lanczos vectors. This code excerpt is shown below:

%Initialization for local reorthogonalization
localOrtho = false; %boolean to tell whether localReOrtho is on based on the value of localSize
if localSize > 0

localPointer = 0; %tells number of prior Lanczos vectors stored
localOrtho = true; %turn on local reorthogonalization
localVQueueFull = false; %boolean that tells whether have stored all prior localSize lanczos vectors
%Preallocate storage for the number of the latest v k's
localV = zeros(n, min(localSize,n)); %can't store more then min dimension of the matrix, n

end

As in the LSMR code, we also add in two helpful nested functions, which make use of some of these
booleans inside of the the minres main function [1]. The first such function given below is used to store
the old vk in the appropriate column. First it checks if the localV circular buffer is full. If it is, we reset
localPointer to be 1 and set localV QueueFull to be true. Otherwise, if localPointer is less then localSize,
we increment localPointer by one. In both cases, we store vk in the updated localPointer column of localV .
It is clear that this procedure stores the prior localSize Lanczos vectors by first filling up the first localSize
columns and then overwriting the oldest vector in column one, the new oldest vector in column two and so
on circularly.

%this function stores v into the circular buffer localV
function localVEnqueue(v)

if localPointer < localSize %localPointer counts the number currently stored
localPointer = localPointer + 1; %not full yet

else
localPointer = 1; %remain orthogonal to previous localSize so erase first one and continue circularly
localVQueueFull = true; %set boolean to true for being full

end
localV(:, localPointer) = v; %store v in the column corresponding to localPointer

end %nested function localVEnqueue

The second nested function, as shown below, uses the vectors stored in localV to perform the local
reorthogonalization, by orthogonalizing vk+1 with respect to each of those vectors one by one in a modified
Gram-Schmidt process. This ensures that vk+1 is numerically orthogonal to the prior localSize Lanczos
vectors. The iteration counter is determined by using the localV QueueFull boolean variable. If it is set to
true, we reorthogonalize with respect to all of the previous localSize vectors. Otherwise, in the case at the
beginning that we have less than localSize vectors, we reorthogonalize up to the localPointer number of
Lanczos vectors. Note that no normalization is required here, since that explicitly happens in the Lanczos
part of the code and so remains numerically, contrary to the orthogonalization.

%Perform local reorthogonalization of v

2

function vOutput = localVOrtho(v)
vOutput = v;
if localVQueueFull

localOrthoLimit = localSize; %calculate where to terminate loop
else

localOrthoLimit = localPointer; %localPointer < localSize
end
for localOrthoCount = 1:localOrthoLimit

vtemp = localV(:,localOrthoCount);
%reorthogonalize 1 by 1
vOutput = vOutput - (vOutput' * vtemp) * vtemp;
%orthogonalize to each stored vector- note we don't have to normalize since
%it is explicitly done in the code and so we don't need to redo it

end
end %nested function localVOrtho

Lastly, we must call these nested functions within the Lanczos procedure. Once the prior v is normalized
in y, it is stored, by calling localV Enqueue, only if the boolean localOrtho is true and that the local
reorthogonalization process is activated. Then, the new non-normalized vector is updated using the Lanczos
procedure. It is re-orthogonalized amongst the prior Lanczos vectors by calling localV Ortho, again only if
the localOrtho boolean is set to be true. This Lanczos part of the code that is within the main while loop is
shown below. Note that the Givens rotation update portion and the rest of the procedure to calculate xk+1

remains unchanged with the additional local reorthogonalization.

s = 1/beta; % Normalize previous vector (in y).
v = s*y; % v = vk if P = I

%if localOrtho turned on store old v for local reorthogonalization of new v
if localOrtho

localVEnqueue(v);
end
y = minresxxxA(A,v) - shift*v; %shift is 0 otherwise solving A - shift*I
if itn >= 2, y = y - (beta/oldb)*r1; end %normalization is the division r1 by oldb

alfa = v'*y; % alphak
y = (- alfa/beta)*r2 + y; %normalization of r2/ beta = v
if localOrtho

% v will be normalized through y later- this is explicit
% orthogonalizing it versus the previous localSize lanczos vectors
y = localVOrtho(y);

end
r1 = r2; %r1 is unnormalized vold
r2 = y; %r2 is unnormalized v
if precon, y = minresxxxM(M,r2); end
oldb = beta; % oldb = betak
beta = r2'*y; % beta = betak+1ˆ2
if beta < 0, istop = 9; break; end
beta = sqrt(beta);
tnorm2 = tnorm2 + alfaˆ2 + oldbˆ2 + betaˆ2;

3 Analysis and Results

The effect of the reorthogonalization of MINRES is tested on matrices from Tim Davis’ sparse matrix col-
lection [2]. An additional function, namely, minresLocalReOrthoTest.m is defined for testing and plotting
purposes. It loads one of the sparse matrix files and sets x = 1./(1:n)’, where n = size(A,1) and then b =
Ax so that a solution exists. There is no preconditioner, so M = [] and no shift operation, that is, shift =
0. We set the iteration limit to be n*5 and the tolerance to be 1.0e-10. Then, the minres function is called
for various localSize parameters and the plots are shown in the figure below:

3

(a) real spd, id = 1 (b) real spd, id = 2

(c) real spd, id = 4 (d) real symmetric, A � 0, id = 68

Figure 1: Plot of the log of the residual versus the number of iterations displaying MINRES with local
reorthogonalization of localSize = 0, 20, 100, n vectors from Vk

It is clear from the all of the plots that as the localSize parameter increases, the total number of iterations
required decreases. All the matrices tested are clearly symmetric and hence square. The first three are positive
definite matrices, A � 0. Figure 1.a shows that little speedup results from localSize =10 and 20, whereas
there is sufficient speedup from 50 and 100 vectors and a over 4x reduction of iterations from storing all the
vectors. We see an analogous result in Figure 1.b, where storing 10 of the previous vectors has a partial
speedup reducing the total iteration count by 100 and 20 has a partial speedup of reducing the iterations by
200, whereas storing 50 reduces the count by 400, 100 reduces the count by 500 and storing all the vectors
reduces it by even more. Figure 1.c shows each increased localSize storage reducing the iteration count by
approximately 100 iterations. The last matrix tested on in Figure 1.d is symmetric, but not positive definite.
For this matrix, we do see that localSize = 10, 20 reduced the iteration count, but not significantly, whereas
localSize = 50 reduces by 50 and all the vectors reduce by only 100. Hence, the iteration gap from storing
all the vectors to storing none of them is smaller for this matrix, explaining the less total reduction for the
smaller localSize storage case.

4

4 Conclusion

It is evident that MINRES with local reorthogonalization reduces the number of iterations required to solve
Ax = b for symmetric A, whether it be positive or negative definite or even indefinite. A future question
to investigate is regarding the balance of the storage costs versus fewer iterations. Clearly, due to the high
storage costs, it is not advisable to store all of the Lanczos vectors, even though this produces the fewest
number of iterations. This potential speedup also depends on the computational cost of computing the matrix
vector product, Av. Thus, finding the optimal number of vectors to store to reduce the iteration count is
key. From this work, it is clear that at least 10-20 Lanczos vectors would be necessary. Moreover, storing
10 or 20 of the previous Lanczos vectors will still be efficient on problems of arbitrary size and do reduce
the iteration count. Even though this smaller value of localSize does not reduce the number of iterations
as much as in the larger value case, due to storage issues, 10 or 20 may be the best compromise. It is clear
that loss of orthogonality numerically in the original MINRES does have an effect on the total number of
iterations required and significantly increases them. Hence, MINRES with local reorthogonalization reduces
the iteration count, making it a viable choice for saddle point problems that, contrary to GMRES, will retain
the symmetry.

References

[1] D.C.-L. Fong and M. A. Saunders. LSMR: An iterative algorithm for least-squares problems. SIAM J.
Sci. Comput., 33(5):2950–2971, 2011. http://stanford.edu/group/SOL/software.html.

[2] T. Davis, Y. Hu and Yahoo! Labs. The University of Florida Sparse Matrix Collection. http://www.

cise.ufl.edu/research/sparse/matrices/list_by_id.html.

[3] C.C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM J. Numer.
Anal., 12(4):617–629, 1975. http://stanford.edu/group/SOL/software.html.

5

http://stanford.edu/group/SOL/software.html
http://www.cise.ufl.edu/research/sparse/matrices/list_by_id.html
http://www.cise.ufl.edu/research/sparse/matrices/list_by_id.html
http://stanford.edu/group/SOL/software.html

	Introduction
	Implementation
	Analysis and Results
	Conclusion

