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Introduction
• Find an optimal domain decomposition or grouping of clustered particles

• To optimize the geometry of various regions or shapes, mathematically,
we must find a shape that minimizes a cost or energy functional, while
satisfying a specified constraint set

•Given a set of points in Rm with associated weights and a set of regions,
the goal is to cluster these particles within the phases, subject to certain
constraints

• There are various formulations of these problems with different constraint
sets and features, such as each region having equal sum of the associated
weights of the particles or equal area

• Shape optimization problem with various complicated multiple intercon-
nected interfaces

•We extend the Voronoi Implicit Interface Method (VIIM), which appro-
priately handles topological changes, by creating a multi-region system,
which is evolved using appropriate constraint satisfying speed functions

•Given n fixed randomly scattered particles, pj ∈ Rm, with correspond-
ing weights, wj ∈ R, the domain, Ω, must be partitioned into N given
sub-regions, Ωi, such that the sums of the weights of the particles are
equal in each sub-region.

•Mathematically speaking, this requirement can be expressed as follows:∑
1≤j≤n
pj∈Ωi

wj = C ∀i,

where
⋃
iΩi = Ω for some arbitrary constant, C.

Background: Level Set
Method and VIIM
•VIIM extends the Level Set Method to track the evolution of the bound-

aries between multiple regions in any dimension.

• In the level set method, the interface, Γ, separating two phases, is repre-
sented by the zero level set, {x ∈ Rm |φ(x) = 0}, of a signed distance
function, φ(x), such that φ(x) is the initial signed distance to Γ, negative
inside a phase and positive outside of it.

• The interface, Γ, is evolved in its normal direction through an initial
value partial differential equation, known as the level set equation:

φt + F |∇φ| = 0,

where F is a speed function arising from a velocity field.

•VIIM uses an unsigned distance function,φ(x), an indicator function
χ(x), to evolve a multiphase system, through a specified speed function,
F

• Solves level set equation using finite difference stencil on a Cartesian grid

•Motion of the interface in this multiphase system is determined by the
two nearby ε-level sets of φ(x), for ε > 0, surrounding the zero level set.

Speed Function
•VIIM is used along with the following speed function, F on the various

different initial interfaces and configurations of particles.

• F is composed of the following three terms:

1. Constraint term

– The constraint term is used to enforce an equal weight sum of
weighted particles in each region.

– Phase based speed function, that is, it is constant for all the grid
points within a phase.

– Sum up the weights of the particles in each phase and subtract from
it the average weight sum:

FΩi
=
∑

1≤j≤n
pj∈Ωi

wj −
1

N

n∑
j=1

wj (1)

– Designed to enlarge phases whose weight sum is less than the average
weight sum and to shrink phases whose weight sum is greater than
the average weight sum.

2. Forcing term to keep the solution away from the particles

FΩij
= max
pi∈Ωi

‖x− pi‖ − max
pj∈Ωj

‖x− pj‖ = Fmax (2)

– Derived from gradient descent on the following energy:

E =

N∑
i=1

∫
Ωi

‖x− pi‖,

where pi is the farthest particle in phase Ωi from point x.

– For each of these two closest phases to a given gridpoint, we find the
furthest particle from the closest point on the interface, x, calculate
the distances and then take their difference.

– This results in a desired solution that wants to be further away from
clusters of particles and be attracted to the void regions.

3. Curvature term

κ = ∇ ·
( ∇φ
|∇φ|

)
, (3)

– Used to find an optimal solution with minimal surface area.

Numerical Methods
• Fconstr constant within a phase and calculated at each domain gridpoint.

• Fmax is evaluated in an initial band around the interface in the Voronoi
reconstruction, where we find the closest point on the interface to the
given gridpoint, as well as the two closest phases.

• Fmax is extended, using the Fast Marching Method by solving the Eikonal
Equation

|∇φ| = 1,

outside this initial band, using a finite difference upwind scheme

• Efficient k-d tree data structure for conducting the farthest neighbor
searches for k-dimensional points

• The curvature term is calculated using central differences

•At each gridpoint, we take a linear combination of these speed functions:
F = Fconstr + C1Fmax + C2κ, where C1, C2 < 1.

• The interface is evolved in time by using Forward Euler to solve the
level set equation, where the time step ∆t ≤ h

max|F | satisfies the CFL

condition, where h is the size of a grid cell

•Repeat the procedure of evolving φ and reconstructing every four
timesteps until an equilibrium solution has been reached.

•MPI Parallel Implementation: Data is synchronized using ghost layers of
appropriate sizes and a Domain class is utilized.

• Boundary conditions: zero Neumann ∂φ
∂n = 0

• Connected components identifying and labeling algorithm. The area of
each component is calculated and only the one with the largest area
remains. The others vanish under curvature flow.

Numerical Experiments
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Figure 1: Initial 5 and 9 phase Voronoi tessellations and equilibrium states, respectively
for 13,001 3D unequally weighted particles.

Energy Minimizations

Econsi =
∑

1≤j≤n
pj∈Ωi

wj EFmaxi =
∫

Ωi
‖x− pi‖

Corresponding minimization of the two-norm of various energies for simple two phase case
with two clusters. We see that the energy from the constraint is minimized at the midway
state, whereas the energy from Fmax is minimized once the line rotates and then there is
maximum separation from the particles and the interface.
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