
#### Biomarker predictions for treatment response in depression

Leanne (Lea) Williams, PhD



#### Disclosures

#### **Brain Resource**

Sponsor for iSPOT-D Consultant

## Context

Can neuroscience deliver clinically useful tools?

I propose the answer is "Yes"

We are in the midst of a paradigm shift

"Applied personalized neuroscience" is one way to harness this shift to achieve clinical translation

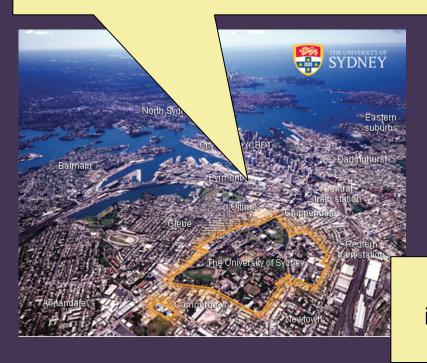
### Integration of Psychiatry and Neuroscience

# THE AMERICAN JOURNAL OF

Neuroscience, Clinical Evidence, and the future of Psychiatric Classification in DSM-5.

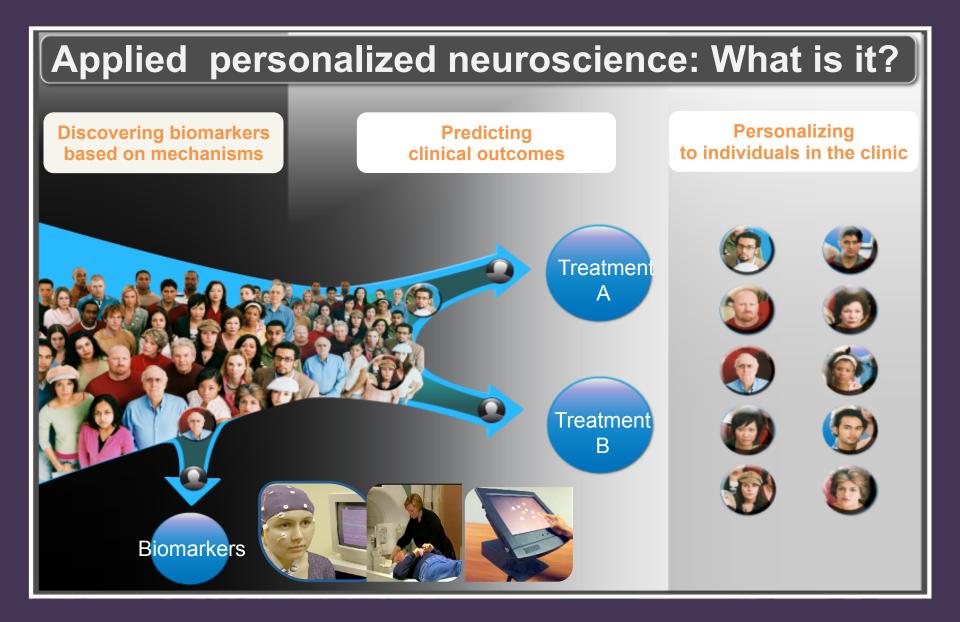
Kupfer DJ & Regier DA Am J Psychiatry, 168(7):672-674, 2011

# the american journal of PSYCHIATRY


Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders

Thomas Insel; et al. Am J Psychiatry. 2010;167(7):748-751

Clinical tools?


### **Applied Personalized Neuroscience**

#### Established proof of concept in Sydney. Illustration from first break schizophrenia





Now the first global practical trial integrating neuroscience and clinical outcomes for depression



## Principles

Grounding it in theories about mechanisms

- Clinicians and patients guide the questions to be answered
- Testing is standardized so different types of data can be connected
- Focus on collaboration and mix of strengths. We can't do this in traditional scientific models
- Make it clinic friendly. Use web technology

# Illustration #1

Brain Dynamics Center, University of Sydney Medical School



First break schizophrenia, depression, anxiety (PTSD), ADHD Risk and resilience

http://www.brain-dy

Clinical, self report, behavioral,
physiological, imaging and genetic measures

### Matching environment to principles



- 1. Set re tic targets.
- Patient a nician needs guide research 2. focus.
- 3. Conne outputs
- Interco 4.
- 5. Standa applica
- To make these concrete I will show you a 60 sec video of a day in the life
- s to
- to

First break schizophrenia

## Brain mechanisms

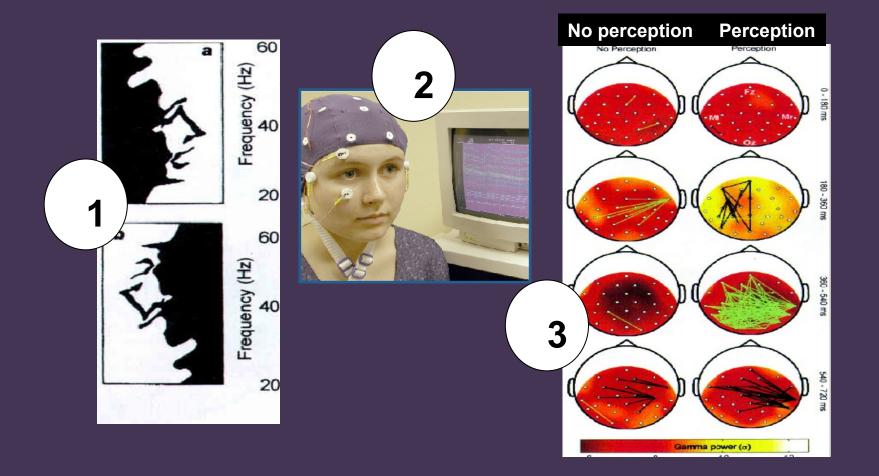
Reduced expression of markers for GABA-ergic interneurons that synapse with pyramidal neurons

Especially in frontal and temporal cortex

This creates a loss of real time synchrony, needed for a coherent gestalt of the internal and external worlds

It fits with other evidence Smaller pyramidal neurons and dendritic spines Regions of grey matter reduction present from first break

> Whitford et al (2007). American J Psychiatry Williams (2008) Expert Reviews in Neurotherapeutics Lee et al (2003) Brain Research Reviews


|                                 | First Onset Psychosis    | Controls                 |  |
|---------------------------------|--------------------------|--------------------------|--|
| Demographics                    | Mean (SD) or sample size | Mean (SD) or sample size |  |
| Sample Size                     | n=108                    | n=108                    |  |
| Age                             | 20.71 (2.91)             | 20.49 (3.05)             |  |
| Gender                          | 70 Male, 38 Female       | 70 Male, 38 Female       |  |
| Diagnoses                       |                          |                          |  |
| Schizophrenia                   | n=51                     | -                        |  |
| Schizophreniform                | n=20                     | -                        |  |
| Psychosis NOS                   | n=15                     | -                        |  |
| Schizoaffective disorder        | n=6                      | -                        |  |
| Bipolar disorder with psychosis | n=6                      | -                        |  |
| Substance induced psychosis     | n=6                      | -                        |  |
| MDD with psychosis              | n=2                      | -                        |  |
| Delusional disorder             | n=2                      | -                        |  |
| Medication                      |                          |                          |  |
| Second Generation Antipsychotic | n=76                     | -                        |  |
| First Generation Antipsychotic  | n=1                      | -                        |  |
| Unknown                         | n=13                     | -                        |  |
| CPZ equivalent dose (mg)        | 390.31 (193.58)          | -                        |  |
| Symptoms                        |                          |                          |  |
| DUP (weeks)                     | 26.73 (55.34)            | -                        |  |
| PANSS - Positive                | 24.99/49 (6.35)          |                          |  |
| - Negative                      | 26.12/49 (7.00)          | -                        |  |
| - General                       | 40.03/112 (8.49)         | -                        |  |
| - Total                         | 81.14/210 (18.25)        | -                        |  |
| CDSS                            | 3.74/27 (4.01)           |                          |  |

*Note:* NOS=not otherwise specified; MDD=major depressive disorder; CPZ=Chlorpromazine; DUP=duration of untreated psychosis; PANSS=Positive and Negative Syndrome Scale; CDSS = Calgary Depression Scale for Schizophrenia

## Multiple measures of these mechanisms

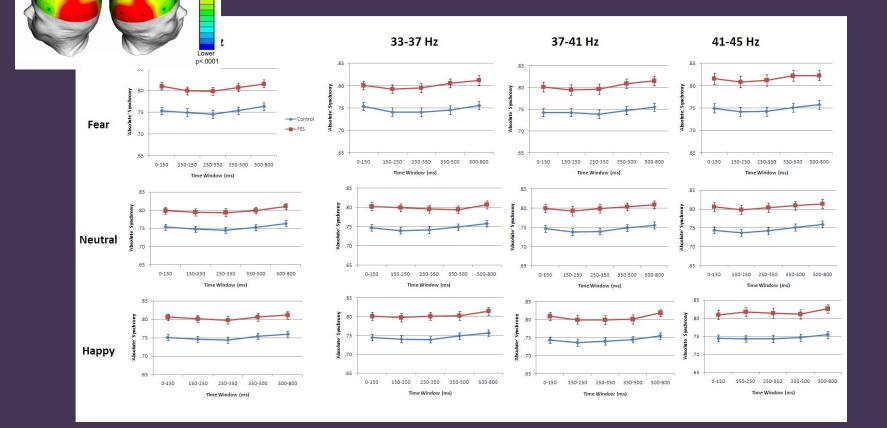


#### How can we look at this in schizophrenia patients? Option 1: "EEG Gamma synchrony"



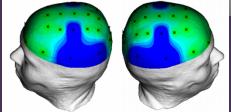
Rodriguez et al. (1999). Nature.

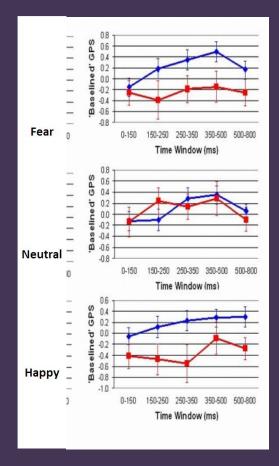
Lee et al. (2003). Brain Research Reviews Symond et al (2005). American J Psychiatry Slewa-Younan et al. (2005). American J Psychiatry


#### Viewing facial expressions of emotion task



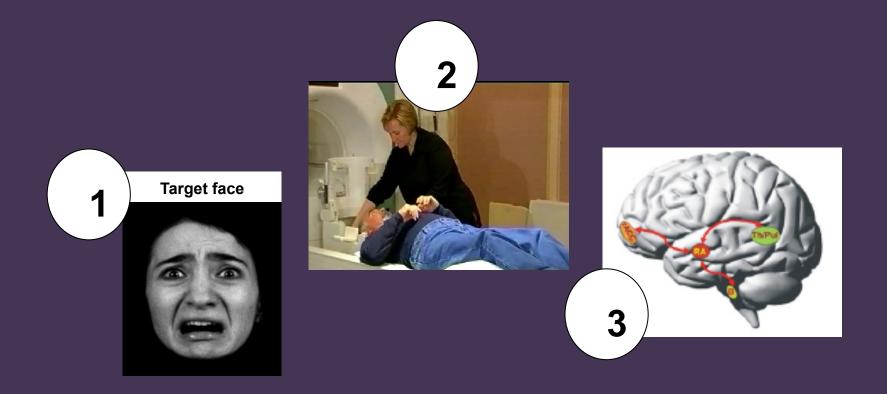
Williams et al. (2004). Human Brain Mapping; Williams et al. (2006). Human Brain Mapping Williams et al. (2006). J Neuroscience


# Too MUCH baseline synchrony in first break schizophrenia patients


Higher p<.0001

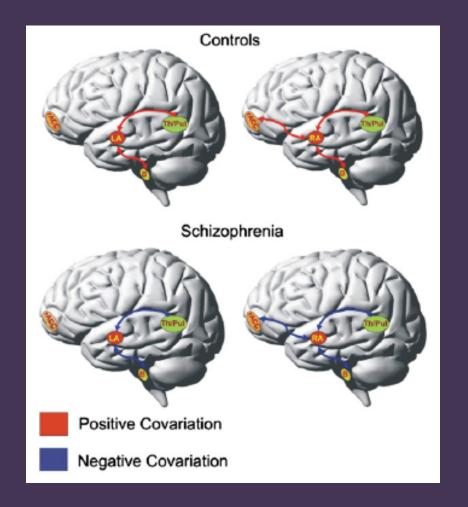


Brennan et al. (in review) Williams et al. (2009) J Psychiatry and Neuroscience


# Too MUCH baseline synchrony in first break schizophrenia patients

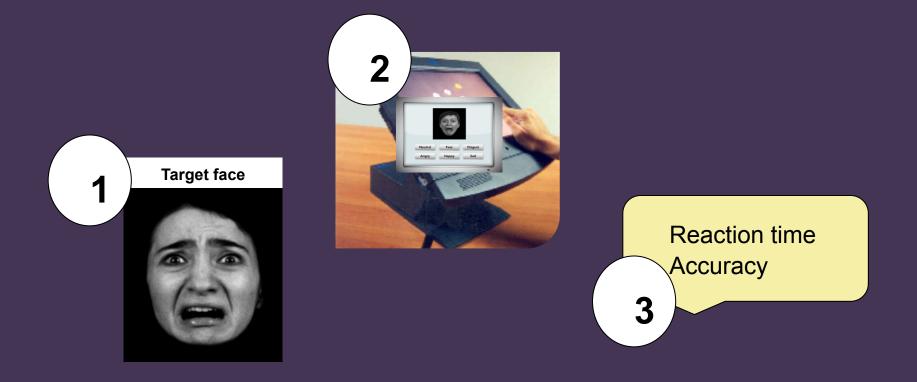





Brennan et al. (in review) Williams et al. (2009) J Psychiatry and Neuroscience

#### How can we look at this in schizophrenia patients? Option 2: fMRI brain circuit connectivity




### **Reversed connectivity from functional MRI**





Williams et al. (2004). American J Psychiatry Williams et al. (2006). Journal of Neuroscience Das, et al. (2007). Schizophrenia Research

How can we look at this in schizophrenia patients? Option 3: Emotional behavior



These brain measures predict function, relevant to the clinic

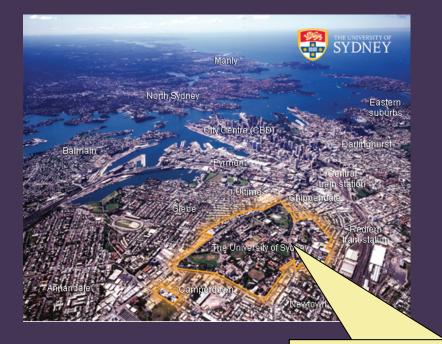
Abnormal synchrony predicted social functioning

Reversed connectivity predicted ↓ social functioning

 Poorer behavior predicted ↓ social functioning ↓ quality of life

No relationships for symptoms

Williams et al. (2009) J Psychiatry and Neurosci.ence


### How can this be applied in the clinic?

#### • Example of "return to school" decision support



Web to patient, then report to clinician in a few minutes

# Illustration #2





**iSPOT-D.** Focus of my visiting position here at Stanford

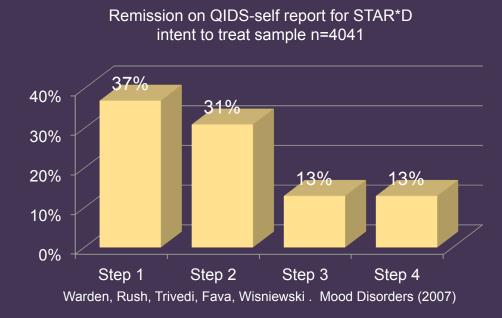
# Academic PI for International Study to Predict Optimized Treatment in Depression (iSPOT-D)


#### iSPOT-D is running across 20 sites in 5 countries. N=1008 patients and 336 controls have completed phase 1



| USA                                                             |                                                 |  |  |  |  |
|-----------------------------------------------------------------|-------------------------------------------------|--|--|--|--|
| California                                                      | Stanford University*                            |  |  |  |  |
|                                                                 | Shanti Clinical Trials Colton*                  |  |  |  |  |
|                                                                 | Center for Healing the Human Spirit Tarzana*    |  |  |  |  |
| Florida                                                         | Miami University                                |  |  |  |  |
| Missouri                                                        | University of Missouri St Louis*                |  |  |  |  |
| New York                                                        | Cornell University                              |  |  |  |  |
|                                                                 | Brain Resource Center, NYC*                     |  |  |  |  |
| North Carolina                                                  | Skyland Behavioral Health Associates*           |  |  |  |  |
| Ohio                                                            | Ohio State University*                          |  |  |  |  |
| Rhode Island                                                    | NeuroDevelopment Center, Providence*            |  |  |  |  |
| Virginia                                                        | University of Virginia*                         |  |  |  |  |
| Australia & New Zealand                                         |                                                 |  |  |  |  |
| Sydney                                                          | University of Sydney*                           |  |  |  |  |
| Melbourne                                                       | Monash University & Swinburne University        |  |  |  |  |
| Adelaide                                                        | Flinders University*                            |  |  |  |  |
| Auckland                                                        | University of Auckland, New Zealand             |  |  |  |  |
| Europe                                                          |                                                 |  |  |  |  |
| Netherlands                                                     | Brainclinics Diagnostics & Treatment, Nijmegen* |  |  |  |  |
| Africa                                                          |                                                 |  |  |  |  |
| Johannesburg                                                    | University of Wittswatersrand, Johannesburg*    |  |  |  |  |
| *Sites contributing to recruitment of the first n=1008 patients |                                                 |  |  |  |  |

# Identify markers that link neuroscience mechanisms to treatment outcomes


# What markers define disorrder and subtypes?

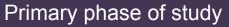


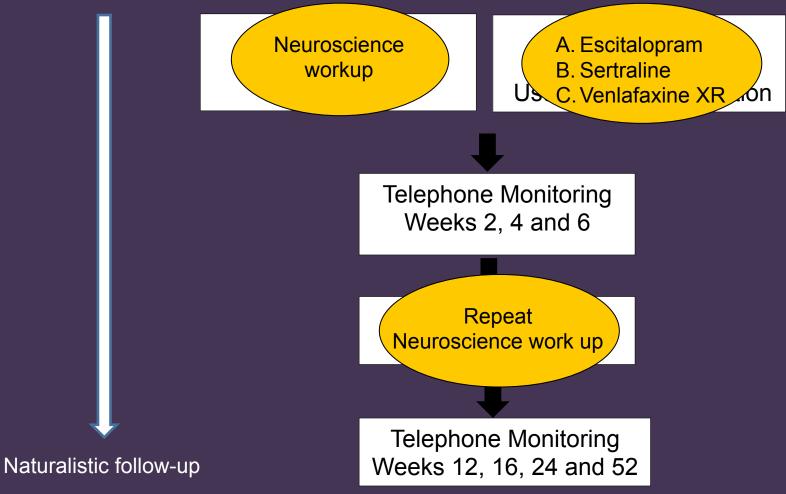
What markers predict antidepressant treatment outcomes?



# The rationale is that neuroscience markers are needed to improve patient outcomes at step 1




29


## Protocol

- It's a practical trial mirroring routine practice
- Along with clinical information, we collect neurobiological and genetic information
- Standardized methods make this feasible



Williams, Rush, Koslow, Wisniewski, Cooper, Nemeroff, Schatzberg, Gordon, Trials, 4, 2011

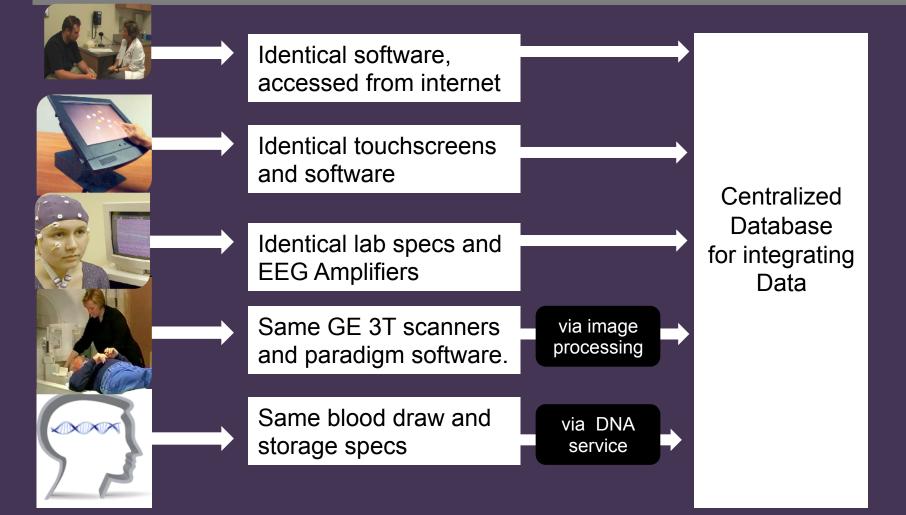




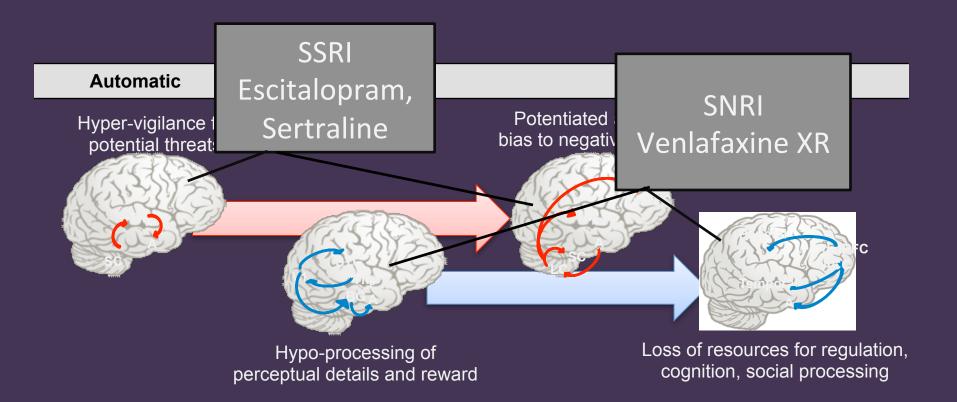
Williams LM, Rush AJ Koslow SH, Wisniewski SR, Cooper N, Nemeroff CB, Schatzberg AF, Gordon E. Trials, 2011

| Recruitment strategy attains a broad sample of treatment seekers |                                                                  |            |  |  |  |  |
|------------------------------------------------------------------|------------------------------------------------------------------|------------|--|--|--|--|
| Source                                                           | % of 1008                                                        | % prior Tx |  |  |  |  |
| Primary Care services at sites                                   | No<br>difference<br>across<br>sources<br>in<br>response<br>to Tx | 50%<br>52% |  |  |  |  |
| Advertisement<br>Other, via family/ friend                       |                                                                  | 62%<br>62% |  |  |  |  |

### Screened for palpable psychopathology, and eligibility for testing and treatment


#### **Inclusion Criteria**

- DSM criteria for Major Depression (MINI-Plus)
- Age 18-65
- Hamilton Depression Rating >= 16


#### Major exclusion criteria

- Suicidal planning
- Psychosis
- Contraindication to study medications

## Standardized measures



# A unifying theoretical context drove the selection of measures



Gordon, Williams (2010). In "Integrative Neuroscience and Personalized Medicine", OUP

#### Demographics reflect the community of treatment seekers

| Feature   | 1008 MDD   | Escitalopram    | Sertraline | Venlafaxine XR |
|-----------|------------|-----------------|------------|----------------|
|           | Mean       |                 |            |                |
| Age       | 37.8 years |                 |            |                |
| Education | 14.5 years |                 |            |                |
| Gender    | %          | No difference   |            |                |
| Female    | 57%        | across          |            |                |
| Race      |            | these treatment |            |                |
| White     | 62%        |                 | arms       |                |
| Black     | 17%        |                 |            |                |
| Other     | 21%        |                 |            |                |
| Ethnicity |            |                 |            |                |
| Hispanic  | 8%         |                 |            |                |

#### Demographics reflect the community of treatment seekers

| Feature            | 1008 MDD | Escitalopram | Sertraline                | Venlafaxine XR |  |  |  |  |
|--------------------|----------|--------------|---------------------------|----------------|--|--|--|--|
|                    | %        |              |                           |                |  |  |  |  |
| Employment         |          |              |                           |                |  |  |  |  |
| Employed           | 50%      |              |                           |                |  |  |  |  |
| Unemployed         | 7%       | N            | No difference             |                |  |  |  |  |
| Retired            | 4%       |              |                           |                |  |  |  |  |
| Student            | 19%      | 11-          | across<br>these treatment |                |  |  |  |  |
| Other*             | 7%       | th           |                           |                |  |  |  |  |
| Unknown            | 13%      | arms         |                           |                |  |  |  |  |
| Marital Status     |          |              |                           |                |  |  |  |  |
| Single**           | 61%      |              |                           |                |  |  |  |  |
| Married/cohabiting | 20%      |              |                           |                |  |  |  |  |
| Divorced/separated | 14%      |              |                           |                |  |  |  |  |
| Widowed            | 1%       |              |                           |                |  |  |  |  |
| Unknown            | 4%       |              |                           |                |  |  |  |  |

\* Includes 'homemaker' \*\* Includes patients cohabiting but identify as single, consistent with legal definition of country in which tested.

Saveanu et al. in prep

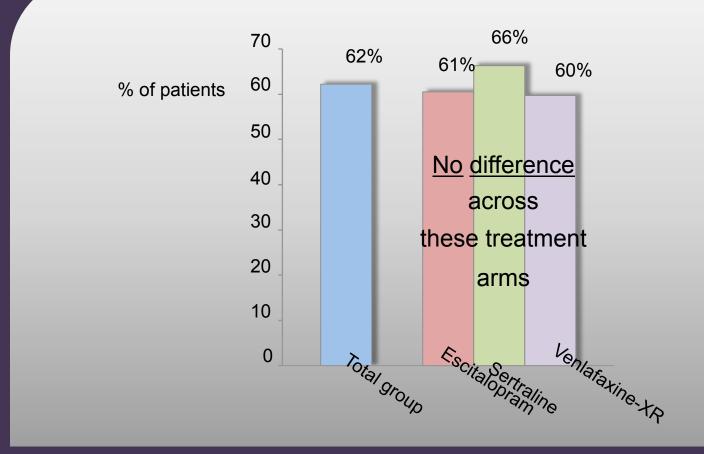
## Clinical features also reflect this community

| Feature                        | 1008 MDD<br>Mean       | Escitalopram | Sertraline | Venlafaxine XR |  |
|--------------------------------|------------------------|--------------|------------|----------------|--|
| Age at first episode           | 22.9 years             |              |            |                |  |
| Duration of MDD<br>Comorbidity | 14.4 years<br><b>N</b> | <u>N</u>     | <u>ce</u>  |                |  |
| Dysthymia<br>Panic Disorder    | 219<br>85              | the          | ent        |                |  |
| Agoraphobia<br>Social Phobia   | 74<br>93               |              |            |                |  |
| Specific Phobia<br>GAD         | 55<br>69               |              |            |                |  |
| No Comorbidities               | 636                    |              |            |                |  |

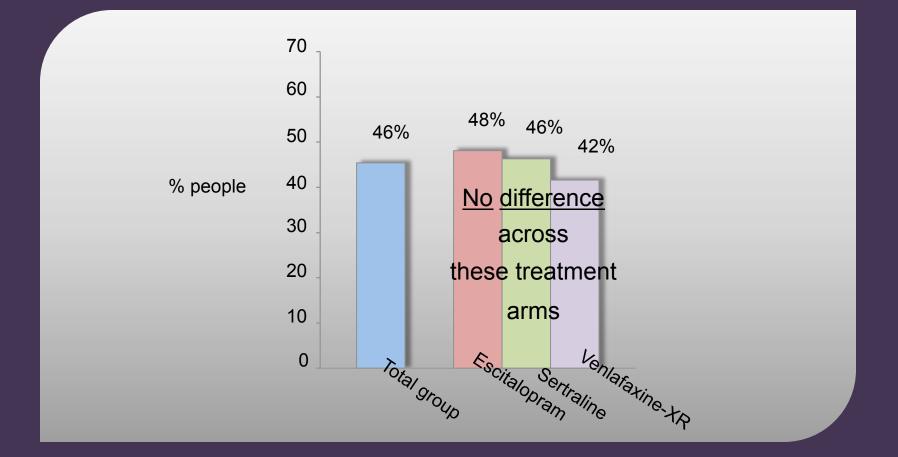
## As expected, the sample is heterogenous

| Feature                  | 1008 MDD | Escitalopram    | Sertraline | Venlafaxine XR |  |
|--------------------------|----------|-----------------|------------|----------------|--|
|                          | %        |                 |            |                |  |
| Previous suicide attempt | 12%      |                 |            |                |  |
| MDD Recurrence           |          |                 |            |                |  |
| Recurrent MDD            | 87%      | No difference   |            |                |  |
| Non-recurrent MDD        | 10%      | across          |            |                |  |
| Unknown                  | 3%       | these treatment |            |                |  |
|                          |          |                 | arms       |                |  |
| MDD Subtypes             |          |                 |            |                |  |
| Melancholic              | 39%      |                 |            |                |  |
| Atypical                 | 28%      |                 |            |                |  |
| Anxious                  | 42%      |                 |            |                |  |

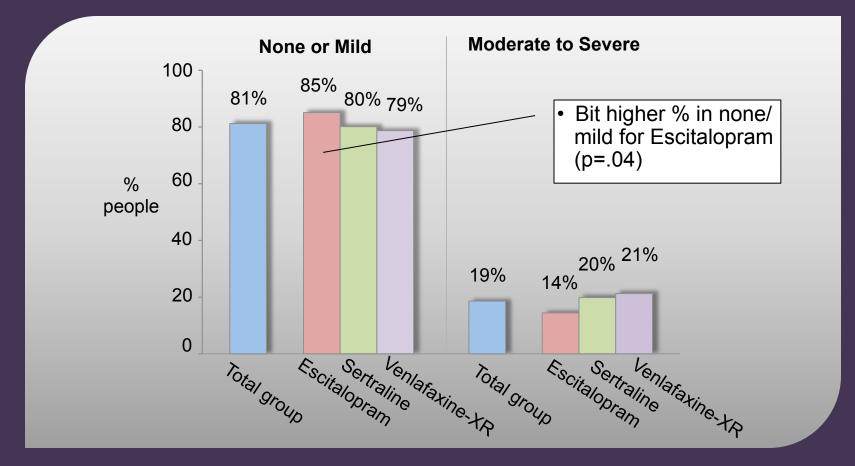
## The sample is moderately severe on average


| Feature                  | 1008 MDD | Escitalopram                | Sertraline | Venlafaxine XR |  |  |  |
|--------------------------|----------|-----------------------------|------------|----------------|--|--|--|
| Clinician-Rated symptoms |          |                             |            |                |  |  |  |
| HRSD17 Score             | 21.9     |                             |            |                |  |  |  |
| Self-reported sympto     |          |                             |            |                |  |  |  |
| QIDS-SR16 Score          | 14.5     | <u>No</u> <u>difference</u> |            |                |  |  |  |
|                          |          |                             |            |                |  |  |  |
| DASS score out of 42     |          | across<br>these treatment   |            |                |  |  |  |
|                          | 22.2     |                             |            |                |  |  |  |
| DASS Depression          |          | arms                        |            |                |  |  |  |
| DASS Anxiety             | 8.8      | diffis                      |            |                |  |  |  |
| DASS Stress              | 18.2     |                             |            |                |  |  |  |

DASS = Depression, Anxiety and Stress Scale


## Functional capacity is impaired

|                                 |          | Escitalopram         | Sertraline | Venlafaxine<br>XR |
|---------------------------------|----------|----------------------|------------|-------------------|
| Feature                         | 1008 MDD |                      |            |                   |
|                                 | Mean     |                      |            |                   |
|                                 | = - / /  | N L                  |            |                   |
| Social-Occupational Functioning | 56 / 100 | <u>No difference</u> |            |                   |
| Satisfaction With Life Scale    | 12 / 35  | across               |            |                   |
| Quality of Life – Physical      | 52 / 100 | these treatment      |            | nent              |
| Quality of Life Psychological   | 35 / 100 | arms                 |            |                   |
| Quality of Life – Social        | 39 / 100 |                      |            |                   |
| Quality of Life – Environmental | 52 / 100 |                      |            |                   |


# Response rate on primary outcome measure: <=50% reduction on HDRS<sub>17</sub>



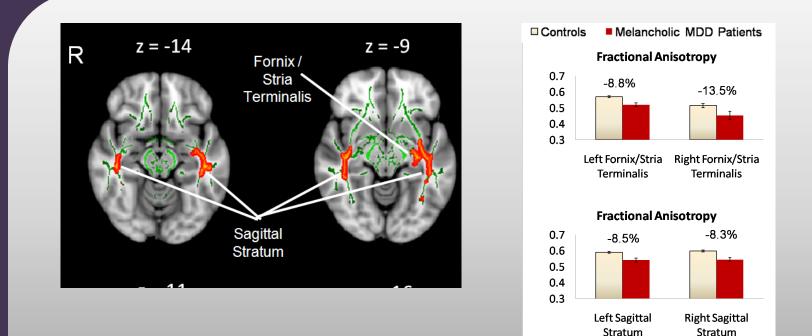
### Remission rate on primary outcome measure: Score of <=7 on HDRS<sub>17</sub>



### Side effect outcomes



Intensity data are displayed. Same pattern for Frequency and Burden


## Functional capacity improved

|                                 |          | Escitalopram                | Sertraline | Venlafaxine<br>XR |
|---------------------------------|----------|-----------------------------|------------|-------------------|
| Feature                         | 1008 MDD |                             |            |                   |
|                                 | % change |                             |            |                   |
| Social-Occupational Functioning | 24.5%    | <u>No</u> <u>difference</u> |            |                   |
| Satisfaction With Life Scale    | 37.1%.   | across                      |            |                   |
| Quality of Life – Physical      | 23.9%    | these treatment             |            | nent              |
| Quality of Life Psychological   | 47.9%    | arms                        |            |                   |
| Quality of Life – Social        | 31.1%    |                             |            |                   |
| Quality of Life – Environmental | 15.1%    |                             |            |                   |

## Findings from n=1008

 These clinical findings provide a "level playing field" for identifying neuroscience markers

### White matter connectivity: a candidate marker for the Melancholic subtype



The melancholic subtype has reduced white matter connectivity (fractional anisotropy) on DTI scans (red colors)

Stratum

## **Functional MRI**

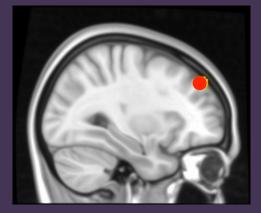
#### COGNITION

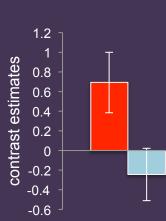
Attention: Oddball paradigm


Working memory: n-Back continuous performance paradigm

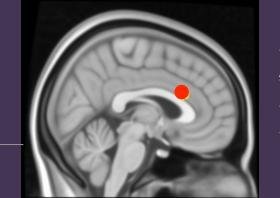
Cognitive control: Go-NoGo paradigm

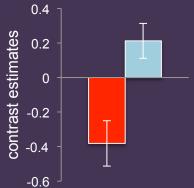
#### **EMOTION**


Viewing of Emotion Faces paradigm

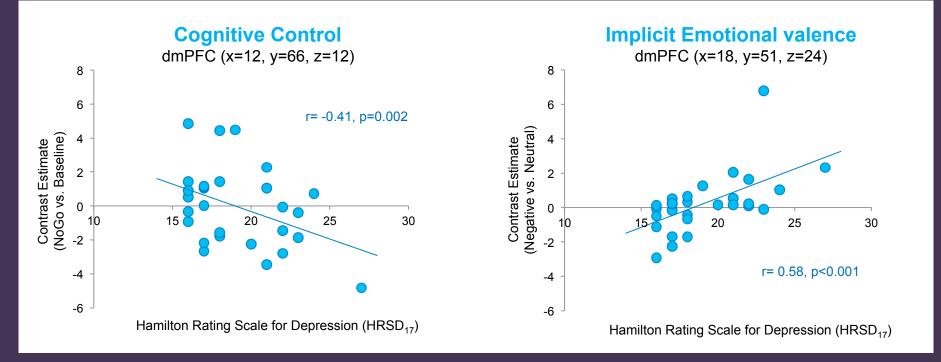

Masked viewing of Emotion Faces paradigm




### **Frontal circuitry**


## Hyper activation in DLPFC for Emotion: Fear





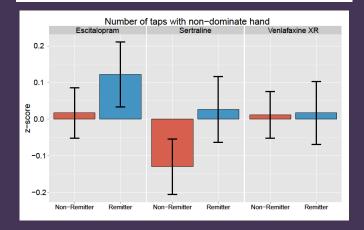

## Hypo activation in ACC for Cognition: control

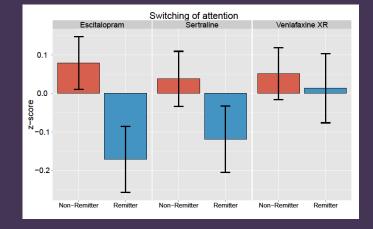




#### Hypo-activation for cognition and hyper-activation for emotion correlate with symptom severity




### Cognition predictors for SSRI: Escitalopram and Sertraline






#### **Psychomotor speed**

#### **Cognitive Control**





Etkin, Rush Williams et al, in prep

## What does it mean?

- Neuroscience offers viable biomarkers for what predicts outcome
- They are grounded in neuroscience of depression
- They are independent of symptom severity.
- They do correlate with real-world functional capacity

## Translation to the clinic



## Building the family of "iSPOTs"

Anxiety Risk and Resilience Non-medication treatments Novel treatments, inc web



# Leading the integration of Psychiatry and Neuroscience, through to application in the clinic

## THE AMERICAN JOURNAL OF

Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders

Thomas Insel; et al. Am J Psychiatry. 2010;167(7):748-751

## THE AMERICAN JOURNAL OF

Neuroscience, Clinical Evifuture of Psychiatric C' DSM-5. Kupfer DJ & Regier DA

Am J Psychiatry, 168(7):672-674, 2011

### Funding support

National Health and Medical Research Council

Australian Research Council

Brain Resource

## Thank you









Brent Solvason Jessica Hawkins, Maureen Chang





Etkin Lab

Stanford/VA Aging Clinical Research Center

> Keith Sudheimer

Jill Waring

Fellowship program

