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Introduction

Learning requires synaptic plasticity.
Expect: enhanced plasticity → enhanced learning.

[Tang et al. (1999), Malleret et al. (2001), Guan et al. (2009)]

But often: enhanced plasticity → impaired learning.

[Migaud et al. (1998), Uetani et al. (2000), Hayashi et al. (2004)]
[Cox et al. (2003), Rutten et al. (2008), Koekkoek et al. (2005)]

Mice with enhanced cerebellar plasticity can show both impaired and
enhanced learning.

Simple synapses cannot explain behaviour. Complex synapses are required.
→ predictions for synaptic physiology.
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Vestibulo-Occular Reflex training

VOR Increase
Training

VOR Decrease
Training

[Cajal]

VOR increase: LTD in PF-Pk synapses.

[du Lac et al. (1995), Boyden et al. (2004)]
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Enhanced plasticity impairs learning

Expectation: enhanced LTD → enhanced learning.
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Experiment: enhanced plasticity → impaired learning.

Knockout of MHC-I KbDb molecules in PF-Pk synapses
→ lower threshold for LTD [McConnell et al. (2009)]
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Depletion hypothesis

Learning rate ∼ intrinsic plasticity rate × # synapses available for LTD.
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Question 1: depletion effect competes with enhanced intrinsic plasticity.
When is depletion effect stronger?
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Replenishment by reverse-training

Depleted

Mutation
weak
strong

Question 2: How can replenishment ever impair learning?
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Replenishment by reverse-training

Depleted Replenished

Decrease training

Mutationweak
strong

Question 2: How can replenishment ever impair learning?
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Replenishment by reverse-training

Depleted Replenished Rescued
Learning

Increase trainingDecrease training

Mutationweak
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Question 2: How can replenishment ever impair learning?
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Replenishment by reverse-training
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Synapses are complex

[Coba et al. (2009)] [Montgomery and Madison (2002)]
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Models of complex synaptic dynamics

Internal functional state of synapse → synaptic weight.
Candidate plasticity events → transitions between states

weak

strong

Potentiation

Depression

Mutation: trans. probs.

Training: rates of pot/dep events

Learning: synaptic weight

[Fusi et al. (2005), Fusi and Abbott (2007), Barrett and van Rossum (2008)]
[Smith et al. (2006), Lahiri and Ganguli (2013)]
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Simple synapses cannot explain the data

Multistate synapse VOR Increase
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Complex metaplastic synapses can explain the data

Serial synapse VOR Increase
Training
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[Leibold and Kempter (2008), Ben-Dayan Rubin and Fusi (2007)]
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Complex metaplastic synapses can explain the data

Serial synapse
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Complex metaplastic synapses can explain the data

Serial synapse

VOR Increase
Training

WT
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reverse training
+

“stubborn” metaplasticity

=⇒ impaired learning

[Leibold and Kempter (2008), Ben-Dayan Rubin and Fusi (2007)]
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Conclusions

Diverse behavioural patterns:
Enhanced plasticity → enhance/impair learning (prior experience).
Reverse-training → enhance/impair learning (plasticity rates).

enhanced LTD vs. depletion → learning outcome.

Predictions for synaptic physiology:
Synaptic complexity: necessary to amplify depletion.
Synaptic stubbornness: repeated potentiation makes subsequent
depression harder.

We used behaviour to constrain the dynamics of synaptic plasticity
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Model of circuit
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Other models that fail

Multistate synapse
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Other models that work

Non-uniform multistate model
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Mathematical explanation

i=1 i=Mqpot

qdep

Serial synapse: p∞i ∼ N
(

qpot

qdep

)i
.

Learning rate ∼ p∞M/2

(
qdep

qpot

)
= N

(
qpot

qdep

) M
2 −1

.

For M > 2: larger qdep =⇒ slower learning.

For M = 2: larger qdep =⇒ larger N =⇒ faster learning.
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