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Introduction

We want to classify the supersymmetric states of N = 4

super Yang-Mills living on S3×Time.

Classifying the 1/16 BPS states would tell us something
about the supersymmetric black holes in AdS5 × S5.

As we’ve had no success with this, we will try to develop
some tricks for 1/8 BPS states that will hopefully generalise.
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Counting states

We would like to classify the states of the theory using the
bosonic symmetries: The SO(2,4) conformal group and
SO(6) R-symmetries.

i.e. count the number of states for each value of the Noether
charges.

This can be summarised in a partition function:

Z = Tr eµiQi

Due to the state-operator correspondence for a conformal
theory on S3, we can count operators instead.
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Supersymmetric spectrum

Supersymmetric states lie in short representations of the
superconformal algebra.
SUSY → non-SUSY requires short reps joining to form a
long rep.

We expect that this will only happen at special points - e.g.
λ = 0, so the SUSY spectrum could match between small
and large coupling.
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AdS5 black holes

A general black hole has six parameters (∆, J, J̄ , R1, R2, R3).

For each value of (J, J̄ , R1, R2, R3), there is an extremal black
hole.

If these five charges satisfy an additional relation, this black
hole preserves 1/16 of the supersymmetries.

[Gutowski,Reall; Chong et al.; Kunduri et al.]
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1/16 BPS states

At zero coupling:

Qualitative but not quantitative matching

No sign of relation between charges

At weak coupling:

Haven’t found the spectrum

Computing an index doesn’t work

[Kinney,Maldacena,Minwalla,Raju]

Let’s look at the easier 1/8 BPS states and learn some tricks
to help with the 1/16 problem.
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1/8 BPS states

These are invariant under both components of Q1
α and their

complex conjugates S1 α.

They are in 1-1 correspondence with cohomology classes of
Q1

α, i.e.

Q |ψ〉 = 0

|ψ〉 ∼ |ψ〉 +Q |φ〉

Each cohomology class contains one state that is also
annihilated by S.

We can count operators instead of states.
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1/8 BPS states

The supercharge acts (in N = 1 language) as:

Qαφ̄
m = 0 , Qαφm = ψmα ,

Qαψmβ = gY M ǫαβǫmkl[φ̄
k, φ̄l] , Qαλβ = fαβ + gY M ǫαβ[φm, φ̄

m] ,

Qαψ̄
m
β̇

= D
αβ̇
φ̄m , Qαλ̄β̇

= 0 ,

QαAβγ̇ = ǫαβλ̄γ̇ . =⇒ QαDβγ̇ = gY M ǫαβ[λ̄γ̇ , ] .

The Q-closed letters are φ̄m and λ̄
β̇
. Their commutators are

Q-exact. They are simultaneously diagonalisable in
cohomology.

They can be counted in terms of eigenvalues.
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3D Harmonic oscillator

The states built out of the scalars can be thought of as N
bosons moving in a three dimensional harmonic oscillator.

(φ̄1
a)

n1(φ̄2
a)

n2(φ̄3
a)

n3 maps onto boson number a in the state
|n1, n2, n3〉.

Bosons because permutations are part of the gauge
invariance.

SO(6) charges are the total excitation #’s of each oscillator.

Energies << N described by multi-gravitons.
Energies ∼ N described by giant gravitons.
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Giant gravitons

Analogy: neutral particle moving in a magnetic field.

Graviton moving with high angular momentum around S5

Likes to puff out into a D3 brane.
[McGreevy et al.; Grisaru et al.; Hashimoto et al.]

Quantising these produces finite N , 1/2 BPS spectrum.
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1/8 BPS giant gravitons

Mikhailov’s construction:

Embed S5 in C
3

|x|2 + |y|2 + |z|2 = 1

Pick a holomorphic function f(x, y, z)

The D3-brane wraps the intersection of the surface
f(e−itx, e−ity, e−itz) = 0 with the S5.

It can be shown that this preserves 1/8 of the
supersymmetries.

Doesn’t include worldvolume gauge fields and fermions.
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Quantisation

First we need to describe the system in the Hamiltonian
formalism.

We need a phase space and a Poisson bracket:

{xi, xj} = ωij , {f, g} = ωij(∂if)(∂jg) ,

or, equivalently, a symplectic form: ωij =
[

ωij
]−1.

Then we can use the standard procedure of Geometric
Quantisation.
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Crnkovic-Witten-Zuckerman formalism

We can identify the phase space with the space of solutions
to the equations of motion.

We then find ω by plugging the solutions into:

ω =

∫

dx δ

(

∂L

∂φ̇i

)

∧ δφi

where φi are the dynamical fields.

We will apply this to Mikhailov’s solutions with the
Born-Infeld action.
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Mikhailov’s phase space

Solutions parameterised by one holomorphic function.

This is an infinite dimensional space. We regulate it by
restricting to polynomials made from a finite number of
monomials:

f(z1, z2, z3) =
∑

~n∈C

c~n (z1)n1(z2)n2(z3)n3 .

c~n and λc~n describe the same surface.

It looks like CP
nC−1.
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But unfortunately . . .

. . . not all surfaces touch the sphere:

Eats holes out of phase space.

However, everything would work perfectly if we ignored
these problems. . . [Beasley]
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Geometric quantisation of CP
n

CP
n has a canonical two-form (Fubini-Study):

ωFS =
1

4πi

1

|z|2

[

dz̄i −
z̄izj

|z|2
dz̄j

]

∧

[

dzi −
ziz̄j

|z|2
dzj

]

.

Suppose that our symplectic form is in the cohomology class
(2πN)[ωFS].

It is a standard result that the Hilbert space is the space of
degree N homogeneous polynomials in the zi.
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3D harmonic oscillator (again)

We can map this to the 3D harmonic oscillator as follows:

c~n → a
†
~n

: the creation operator for a particle in the state
|n1, n2, n3〉.

A monomial of degree N acting on the vacuum produces a
N-particle state.

These states transform the same way under U(3) as our 3D
harmonic oscillator.
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Problems

Some surfaces do not touch the sphere, e.g.

ciz
i − 1 = 0 for |c|2 < 1 .

Singularities when the function factorises - the surface
degenerates, e.g.

x2 + y2 + ǫz2 = 0 as ǫ→ 0 .

Finding the cohomology class of ω.
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Resolution

There is a U(3) invariant coordinate change that maps
the holes to a point leaving the phase space
topologically CP

nC−1

There is a geometric description of the symplectic form
in terms of volumes swept out by deformations that
shows that any singularities are mild enough to allow
geometric quantisation.

The structure of CP
nC−1 means that the cohomology

class is the same for all sets of monomials and we can
show that it is 2πN for linear functions.
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Example: Linear functions

Let’s look at the space of functions f(zi) = ciz
i − 1.

The symplectic form is:

ω = 2N

[(

1

|c|2
−

1

|c|4

)

dc̄i ∧ dci
2i

−

(

1

|c|2
−

2

|c|4

)

c̄icj

|c|2
dc̄j ∧ dci

2i

]

.

It is zero inside |c|2 < 1 and has four null directions on the
boundary.
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Contracting the hole

Coordinate change:

wi = ci

√

|c|2 − 1

|c|2

Shrinks sphere |c|2 = 1 to the point |w|2 = 0. We get:

ω =
2N

1 + |w|2

(

dwi ∧ dwi

2i
−

wiw
j

1 + |w|2
dwi ∧ dwj

2i

)

This is precisely (2πN)ωFS on CP
3 !
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Summary

The Phase space is CP
nC−1

The symplectic form is cohomologically (2πN)ωFS

The coordinates have U(3) charges (n1, n2, n3)

This is isomorphic to the 3D harmonic oscillator

This gives the partition function

∑

N

ζNZN (µ1, µ2, µ3) =
∏

~n

1

1 − ζe−µini
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Conclusions and future directions

We get exact (finite N) matching between the gauge theory
and giant gravitons.

We are getting ordinary gravitons by quantising D-branes.

Giants and dual giants count the same states.
[Mandal,Suryanarayana]

Should be extended to include worldvolume gauge fields
and fermions.

Can be extended to other AdS/CFT duals.

Classical 1/16 BPS giants are known, but much harder to
quantise. [Kim,Lee]
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