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Introduction

AdS/CFT maps black holes to deconfined gauge theories (quark-gluon
plasmas).

In the long wavelength limit, the gauge theory can by described by fluid
dynamics. Some properties of these fluids have been computed by looking
at the black holes.

[Policastro, Son, Starinets;. . . ]

We will look at the reverse – using fluid mechanics to study higher dimensional
black objects: put them in an asymptotically AdS-ish space.
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Black rings

In four dimensions there are horizon topology and black hole uniqueness
theorems. At fixed energy and angular momentum, these allow only one
black hole with an S2 horizon.

In five dimensions, we are allowed an S1 × S2 horizon as well – the black
ring. For a range of energies and angular momenta, it is possible to have
two black ring and one black hole solutions - violating uniqueness.

[Emparan, Reall]
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Higher dimensions

For D ≥ 6: no exact solutions (except Myers-Perry). Approximate
solutions for RS1 � RS3 .

S

J

J

S

[Emparan et al.]

Other topologies? [Galloway, Schön]
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Gregory-Laflamme instability

Instability of lack strings and branes.

End point of instability?

Related to Plateau-Rayleigh instability? [Caldarelli et al.]
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Plasmaballs in confining theories

Plasmaballs are a generic feature of large N confining field theories that
have first-order deconfining phase transitions

Bubble of deconfined phase, surrounded by confined phase, held together
by surface tension.

Focus on theories that come from compactifying conformal theories on a
Scherk-Schwarz circle.

For concreteness: N = 4 Yang-Mills on R1,2 × S1 at large N and large λ.
The S1: θ ∼ θ + Rθ =⇒ confining gauge theory with scale Λ ≈ 1/Rθ.
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Confined phase

At low temperatures, gravity dual: AdS soliton:

ds2 =
R2

AdS

z2

(
−dt2 + FRθ

(z) dθ2 + d~x2 +
1

FRθ
(z)

dz2

)
,

where Fa(u) = 1−
(
πz
a

)4
and R2

AdS =
√
λα′. [Witten]

Small z : Poincaré AdS5 with one compact direction.

At z = Rθ/π, the θ circle contracts: space stops.

z = 0 z = Rθ

π
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Deconfined phase

At high temperatures: the black brane:

ds2 =
R2

AdS

z2

(
−Fβ(z) dt2 + dθ2 + d~x2 +

1

Fβ(z)
dz2

)
.

Horizon at z = β
π . Temperature: T = 1/β.

Dominant phase above transition temperature, Tc = 1
Rθ

.

The equation of state of the dual plasma can be found from this gravity
solution.

P =
α

Tc
(
T 4 − Tc4

)
.
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Plasmaball solutions

The plasma ball is a bubble of plasma, held together by surface tension,
surrounded by the deconfined phase.

On the bulk side, deep interior looks like black brane. Far from the
plasmaball, it looks like the AdS soliton. There is a domain wall that
interpolates between the two.

AdS solitonBlack brane

Boundary

AdS soliton

In the limit of infinitely large radius, a numerical domain wall solution has
been found. The surface tension and thickness can be computed from this
solution. [Aharony, Minwalla, Wiseman]

Subhaneil Lahiri (Harvard) Black rings from fluid mechanics March 7, 2009 10 / 28



The Scherk-Schwarz circle does not contract in the black brane region but
does contract in the AdS soliton region.

Boundary

Black brane AdS solitonAdS soliton

Horizon topology: fibre circle over the plasmaball, contracting at surfaces.
Disk of plasma =⇒ S3 horizon.

Subhaneil Lahiri (Harvard) Black rings from fluid mechanics March 7, 2009 11 / 28



Fluid mechanics

When the density and velocity of the plasma vary little over the “mean
free path” of the quasiparticles (roughly gluons), the effective dynamics of
the gauge theory can be described by fluid dynamics.

The equations of motion are ∇µTµν = 0. The dynamical input is in
specifying Tµν .

For long wavelengths, we need only go up to one derivative terms.

This approximation breaks down at surfaces – but at scales � surface
thickness we can replace these regions with a δ-function localised surface
tension.
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Stress tensor

The zero derivative part

Tµν
perfect = ρuµuν + P(uµuν + gµν) .

At the one derivative level

Tµν
dissipative = −ζϑPµν − 2ησµν + qµuν + uµqν ,

where qµ = −κPµν(∂νT + aνT ) .
The surface contribution

Tµν
surface = −σhµν

√
∂f ·∂f δ(f ) .

surface at f (x) = 0.
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Three dimensional configurations

We look at rigidly rotating configurations: (ut , ur , uφ) = γ(1, 0,Ω). The
centripetal force is provided by a pressure gradient.

We find Tµν
dissipative ∝ ~∇(T /γ).

Interior: e.o.m.⇔ T ∝ γ.

Surfaces: P = ±σ
r . Relates constant of proportionality to Ω and position

of surface.
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Solutions

We find two types of solution:

Plasmaballs Plasmarings

Ω Ω

S1 −→ S3

↓

B2

S1 −→ S1 × S2

↓

S1 × B1
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Thermodynamics

We compute the thermodynamic properties of the whole solution with

E =

∫
d2x

(
T tt
)
,

L =

∫
d2x

(
r2T tφ

)
,

S =

∫
d2x (γs) .

Then we compute an overall temperature and angular velocity via

dE = TdS + ΩdL ,

we find

T =
T
γ
, Ω as before .
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Phase diagram

20 40 60 80 100

5

10

15

20

25

30

35

Large ring

Small ring

Ball

S̃

L̃

0.0 0.2 0.4 0.6 0.8
0

1

2

3

4 Black hole

Small black ring

GJ

(GM)3/2

S

(GM)3/2

Large black ring

Subhaneil Lahiri (Harvard) Black rings from fluid mechanics March 7, 2009 17 / 28



Phase diagram

20 40 60 80 100

5

10

15

20

25

30

35

Large ring

Small ring

Ball

S̃

L̃
0.0 0.2 0.4 0.6 0.8
0

1

2

3

4 Black hole

Small black ring

GJ

(GM)3/2

S

(GM)3/2

Large black ring

Subhaneil Lahiri (Harvard) Black rings from fluid mechanics March 7, 2009 17 / 28



Topologies in six dimensions

S4

↓
B3

z

r

S3 × S1

↓
B2 × S1

z

r

S2 × S2

↓
B1 × S2

z

r

S2 × T 2

↓
B1 × T 2

z

r
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Solving equations of motion

Again: rigid rotation (ut , ur , uφ, uz) = γ(1, 0,Ω, 0).

Again: T
γ = T = constant.

Now: surface satisfies P = σKµ
µ .
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Ordinary balls
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Pinched balls
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Rings
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Phase diagram

J

S

[Bhardwaj,Bhattacharya]
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Topologies in seven dimensions
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Approximate solutions

For ring, B3 × S1, take ε =
RB3

RS1
small.

For ‘torus’, B2 × T 2, take ε =
RB2

RT2
small.

Expand in ε. At O(ε0) – just a tube.

Similar to black-fold construction of Emparan et al.
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Torus
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Summary

We can get insight to some problems in classical gravity from fluid
mechanics in AdS/CFT.

In six dimensions – proposal for phase diagram.

In seven dimensions – new topology.
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